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Abstract

We study the effects of monetary shocks in a model of state-dependent price and wage
adjustment based on “control costs”. Suppliers of retail goods and of labor are both
monopolistic competitors that face idiosyncratic productivity shocks and nominal rigidities.
Stickiness arises because precise decisions are costly, so agents choose to tolerate small
errors in the timing of adjustments. Our simulations are calibrated to microdata on the size
and frequency of price and wage changes. Money shocks have less persistent real effects in
our state-dependent model than they would a time-dependent framework, but nonetheless
we obtain sufficient monetary nonneutrality for consistency with macroeconomic evidence.
Nonneutrality is primarily driven by wage rigidity, rather than price rigidity. State-dependent
nominal rigidity implies a flatter Phillips curve as trend inflation declines, because nominal
adjustments become less frequent, making short-run inflation less reactive to shocks.

Keywords: nominal rigidity, state-dependent adjustment, logit equilibrium, near rationality,
control costs.

JEL classification: E31, D81, C73.



Resumen

En este trabajo estudiamos los efectos de las perturbaciones monetarias en un modelo donde
las probabilidades de ajustar precios y salarios varian con el estado agregado e idiosincrasico
debido a los «costes de control». Tanto las empresas al por menor como los trabajadores son
competidores monopolisticos sujetos a perturbaciones idiosincrasicas en su productividad
y a rigideces nominales. Las rigideces surgen porque tomar decisiones requiere tiempo, y
mas cuanto mayor sea su precision. Esto impide que las empresas y los trabajadores ajusten
precios y salarios sin error y en el momento justo. Simulamos el modelo seleccionando los
parametros de forma que reproduzca el tamafno y la frecuencia de los cambios en los precios
y en los salarios observados en los datos. Los efectos reales de las perturbaciones monetarias
son menos persistentes en nuestro marco «dependiente del estado» de lo que serian en un
marco «dependiente del tiempo»; no obstante, son de una magnitud similar a la observada
en los datos macroecondmicos. La «no neutralidad» del dinero en nuestro modelo se debe,
principalmente, a la rigidez de los salarios, mas que a la de los precios. Cuando el nivel de
rigidez nominal depende del estado de la economia, como en nuestro trabajo, la pendiente
de la curva de Phillips disminuye cuanto menor es la inflacion de largo plazo, ya que los ajustes
nominales se hacen menos frecuentes y, por tanto, la inflacion de corto plazo reacciona menos
a las perturbaciones monetarias.

Palabras clave: rigidez nominal, ajustes dependientes del estado, equilibrio logit, racionalidad
acotada, costes de control.

Cddigos JEL: E31, D81, C73.



1 Introduction

The nominal rigidity of prices and/or wages is a prominent assumption in monetary macroeconomics
today. For reasons of analytical tractability, many studies are based on Calvo (1983) framework, in which
the probability of adjustment is constant. But several influential papers have claimed that if nominal
stickiness is derived from rational decision-making, instead of being imposed in an ad hoc way, then
the real macroeconomic effects monetary policy are negligible (see for example the menu cost models of
Caplin and Spulber 1987, and Golosov and Lucas Jr 2007). This finding motivates a wave of new research
investigating how the conclusions of Calvo-style models and menu cost models hold up in a variety of
state-dependent pricing frameworks that are closely calibrated to retail price microdata (e.g. Klenow and
Kryvtsov 2008; Gagnon 2009; Matéjka 2015; Midrigan 2011; Alvarez et al. 2011; Eichenbaum et al. 2011;
Kehoe and Midrigan 2015; Dotsey et al. 2013; Alvarez et al. 2015; Costain and Nakov 2011, 2019).

Much of this new literature concludes, to quote Kehoe and Midrigan, that “prices are sticky after all”.
That is, while money is almost neutral in stripped-down menu cost models like Golosov and Lucas Jr
(2007), related frameworks that fit retail microdata better show that price stickiness does matter at the
aggregate level, delivering nontrivial real effects of monetary policy.! This apparent consensus represents
an encouraging improvement in the link between microdata and modern macroeconomics, but it derives
from studies where, for computational reasons, price stickiness was the only friction considered. This
contrasts with the current generation of empirical DSGE models that rely not only on nominal rigidity of
prices and wages, but also on many other frictions, such as consumption habits, investment adjustment
costs, and labor matching frictions. Hence, to better assess the quantitative role of nominal rigidity for
macroeconomic dynamics, it is still relevant to study models in which multiple frictions interact.

As a modest step forward, this paper analyzes a model with one additional layer of state-dependent
adjustment, allowing for wage stickiness as well as price stickiness. A natural point of departure for our
analysis is Erceg et al. (2000) study of monopolistic retail price setters and monopolistic wage setters, both
operating under the Calvo framework. Following Erceg et al., we set up the wage setters’ problem so that
it closely parallels the price setting problem, but we allow for state dependence in both decisions. More
precisely, we compare a framework in which both price and wage setters are constrained by the Calvo
friction to a framework in which price and wage setters are both constrained by a state-dependent friction,
and in addition we compare these with scenarios in which price setting and/or wage setting approaches
perfect flexibility. We emphasize that our goal is to compare different specifications of price stickiness and
wage stickiness while abstracting from any other frictions that might affect the labor market (or other
markets). While the interaction of nominal rigidities with labor market matching is a major theme of the
macro-labor literature, here we quantify the effects of state-dependent prices and wages by themselves,
leaving their interaction with matching frictions for future work.

Our model of state-dependent adjustment is an extension of the “control cost” model of price stickiness
proposed by Costain and Nakov (2019), henceforth CN19. Control costs are a modeling device from game
theory intended to capture the idea that the costs of precise decision-making sometimes lead players to

2

make some mistakes.® Under the control cost framework, a decision is regarded as a random variable

!The reason for nonneutrality is that the microdata seem to favor specifications in which the “selection effect” is weaker
than Golosov and Lucas Jr (2007) found.
2See Stahl (1990), Mattsson and Weibull (2002), or Van Damme (2002), Ch. 4.
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defined over a set of feasible alternatives, and the decision-maker is assumed to face a cost function that
increases with the precision of that random variable. Placing probability one on the optimal alternative is
a very precise decision, so the decision-maker may instead economize on the costs of choice by tolerating
some randomness (some errors) in the alternative chosen. CN19 models nominal rigidity by applying this
framework both to the prices firms choose, and to firms’ control of the timing of their adjustments. In
equilibrium, managers of retail firms economize on the time devoted to decision-making by tolerating some
low-cost errors in the prices they set, and some low-cost errors in the timing of their price adjustments.
There are a number of reasons why it seems interesting to extend the CN19 framework to other
frictions, beyond price stickiness. First, it describes adjustment costs in a sparsely parameterized way;
the benchmark scenario in CN19 simultaneously fits many “puzzling” features of retail price setting by
calibrating only two free parameters in the decision cost function. Second, these costs have an appealing
interpretation: the costs of price adjustment are interpreted as time devoted by management to decision-
making. These may plausibly be larger than the menu-type fixed costs associated with the physical act of
changing the price, and may be compared, at least roughly, to case studies on time use by management.
Third, the model is no harder to solve numerically than comparable menu cost models, but it is far more
tractable than “rational inattention” models in the tradition of Sims (2003). Fourth, the mathematical
structure of the model —resetting a control variable at intermittent points of time— seems applicable to
many decisions other than price adjustment, potentially allowing us to describe many margins of a general
equilibrium model in a mutually consistent and mutually comparable way. Finally, since the calibration
strategy in the recent state-dependent pricing literature involves matching many moments of the distri-
bution of individual price adjustments, it stretches credulity to abstract from errors. When matching (for
example) the standard deviation of observed price adjustments, inferences about the standard deviation
of the underlying shocks may differ greatly depending on whether or not we insist that every single price

adjustment represents a precisely optimal action.

2 Related literature

Time-dependent price and wage rigidities frequently interact in contemporary DSGE models, such as
Blanchard and Gali (2007) and Gali et al. (2012). One of the key papers that first examined the interplay
of these two rigidities, under the Calvo mechanism, was Erceg et al. (2000), which identified a tradeoff
between stabilization of output, price inflation, and wage inflation. Huang and Liu (2002) studied the
relative importance of price and wage rigidity in a time-dependent model, concluding that wage rigidity
matters more for monetary non-neutrality; Christiano et al. (2005) concur. We revisit this question in a
state-dependent model.

The literature that contrasts state-dependent pricing models to micro- and macrodata is extensive, as
we discussed above; surveys include Klenow and Malin (2010) and Nakamura and Steinsson (2008). We
know of only one previous study of state-dependent prices and wages in a DSGE model (Takahashi 2017).
Takahashi’s paper differs from ours in that it analyzes a stochastic menu cost model (following Dotsey et al.
(1999)) rather than a control cost model. But more importantly, it abstracts from idiosyncratic shocks,
so it cannot be closely assessed relative to patterns in microdata on price and wage changes. Annual

data relevant for analyzing the distribution of wage adjustments include those of the International Wage
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Flexibility Project (Dickens et al. 2007), which we will use here. Barattieri et al. (2014) analyze quarterly
wage adjustments in SIPP data. Very recently, wage change data with higher frequency and higher
coverage have also become available (Grigsby et al. 2018).

Since our framework abstracts from any frictions in labor mobility, it is not directly related to the
search and matching literature. However, it can shed light on macro-labor issues such as the slope of
the Phillips curve and the cyclicality of real wages and markups. Akerlof et al. (1996), Fahr and Smets
(2010), Benigno and Ricci (2011), and Lindé and Trabandt (2018) have argued that downward nominal
wage rigidity makes the Phillips curve flatter when inflation is low. We will show that the same result is
obtained without downward rigidity, if the adjustment hazard varies with inflation.

The cyclicality of the real wage has long been controversial (Huang et al. 2014; McCallum and Smets
2007; Smets and Wouters 2007). Christiano et al. (2016) report a small and insignificant procyclical
response of the real wage to monetary shocks. Shimer (2012) argues that the “labor wedge”, defined as
the marginal product of labor minus workers’ marginal rate of substitution, is strongly countercyclical.
Equivalently, Gali et al. (2007) define an “efficiency gap” (marginal rate of substitution minus marginal
product of labor) which they show is strongly procyclical. They further argue that the wedge (the negative
of the gap) decomposes into two terms: a highly countercyclical markup of wages over the marginal rate
of substitution, and a moderately countercyclical markup of prices over firms’ marginal costs. The latter
property is controversial: Nekarda and Ramey (2013) show that a wide variety of estimation procedures
reject countercyclical markups of prices over firms’ marginal costs, while Bils et al. (2018) argue using
evidence on the self-employed support countercyclical price markups. This debate puts in question the
central transmission mechanism of the simplest New Keynesian models, in which prices, but not wages,
are rigid. Nonetheless, this leaves open the possibility that monetary nonneutrality may derive primarily

from wage rigidity.

3 Model

We embed the near-rational nominal adjustment model of Costain and Nakov (2019) in a discrete-time
New Keynesian general equilibrium framework that combines elements of Erceg et al. (2000) and of
Golosov and Lucas Jr (2007). There is a continuum of retail firms and a continuum of workers; retail
goods markets and labor markets are both monopolistically competitive. Each firm is the unique seller of
a differentiated retail good, and resets its nominal price intermittently. Each worker is the unique seller
of a differentiated type of labor, and resets its nominal wage intermittently. Price and wage adjustments
are driven by idiosyncratic as well as aggregate shocks. Workers belong to a representative household;
the budget constraint is defined at the household level. In addition, there is also a monetary authority

that sets an exogenous growth process for the nominal money supply.

3.1 Household

The worker’s period utility function is u(Ct) — X (Hy) + v (My/P;), where Cy is consumption, H; is total
time devoted to working or decision-making, and M;/P; is real money balances. The functions v and v are

assumed increasing and concave. We assume the increasing, convex disutility function X (H) = ﬁH 1+,
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We will focus initially on the linear case ¢ = 0, implying X (H) = xH, which is easier to solve, but we
will soon see that the nonlinear specification ¢ > 0 is necessary to match wage adjustment data. Utility
is discounted by factor 8 = S;8p per period, where 1 represents the effect of pure impatience, and Bp
reflects the possibility of death (each individual worker dies and is replaced by a new individual with

probability 1 — Sp per period). Consumption is a CES aggregate of differentiated products Cj;, with

1 o =
ctz{/o o dj} . 1)

The representative household consists of a continuum of workers, and aggregates their resources. Its

elasticity of substitution e:

period budget constraint, in nominal terms, is
1 1
/ Py Cjdj + My + Ry ' By = / Wit Hydi + My + By +TM + TP, (2)
0 0

Here fol P;;Cjidj is total nominal consumption, and fol Wit H;di is total labor compensation received from
supplying the differentiated labor varieties H;;. Bj; represents nominal bond holdings, with interest rate
Ry —1; TM is a lump sum transfer from the central bank, and T)” is a dividend payment from the firms.

Households choose {C}, By, Mt}fio to maximize expected discounted utility, subject to the budget
constraint (2).> The workers in each household set nominal wages intermittently, as we will discuss in
Sec. 3.3, and they supply labor to fulfill the demand that arises given the nominal wages they have set.

Optimal consumption across the differentiated goods implies
Cji = (Pje/ Bt) ™ Cy, (3)
so nominal spending can be written as P,C; = fol P;;Cjidj under the price index

1
1 T1—e
P, = {/ Pjtledj} . (4
0

The first-order conditions for total consumption and for money use are:

~—

1 P (Cii1)
Rt = fE <Pt+1u (Z)) ®)
_V(My/P) P/ (Cq)
! u'(Ct) oE <Pt+1u (C't)> ©)

3.2 Monopolistic firms

Each firm j produces output Yj; under a constant returns technology Y;; = A;;Nj;. Efficiency units of
labor, Nj;, are the only input. Aj; represents an idiosyncratic productivity process that follows a time-
invariant Markov process on a bounded set, A;; € I'A C [4, A]. Productivity innovations are iid across
firms. Thus, Aj; is correlated with A;; 1, but it is uncorrelated with other firms’ shocks. Firm j is a

monopolistic competitor that sets a price Pj;, facing the demand curve Yj; = C’tPfP];E. We assume each

3We use an abbreviated notation here for the sake of brevity. The time subscript on the household’s decision variables
should not be interpreted as indicating deterministic dependence on time; instead, it indicates dependence on the stochastic
aggregate state of the economy.
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firm must fulfill all demand at its chosen price. Since firms are infinitesimal, each firm j ignores the effect

of its own price Pj; on the aggregate price level P;. It hires labor at wage rate W;, generating profits

Wi

Ujt = PjtYje — WiNjr = (Pj ™
jt

> CoPipy” (7)
per period. Firms are owned by the household, so they discount nominal income between times ¢ and
t+ 1 at the rate 5Pt“'(ct+1)

Pt+1u/(Ct) )
It will help to distinguish value functions at several different points in time. First, let V;(P, A) be the

consistent with the household’s marginal rate of substitution.

value of a firm that begins period ¢ with nominal price P and productivity A, prior to any time ¢ decisions,
and prior to time ¢ output (see the timeline). We assume that choices take time, so if the firm decides in
period ¢ to adjust its price, the new price only becomes effective at time ¢ + 1.4 Next, let O;(P, A) be the

firm’s continuation value, net of current profits, when it still has the option to adjust prices. That is,>

Wi

Vi(P,A) = <P = A) CyPfP™ + Oy(P, A) (8)

The continuation value O (P, A) incorporates the value of the firm’s two possible time-t decisions: whether
to adjust its price, and if so, which new price P’ to set for period ¢ + 1. The firm may make errors in
either of these choices. We discuss these two decisions in turn, beginning with the latter.

3.2.1 Choosing a new price

Our model formalizes the idea that nominal rigidities may derive primarily from the costs of decision-

making. While one might assume that by paying a fixed cost, the firm can make the optimal choice, this

Figure 1: Firms’ timeline

Start ¢: Work and Decision outcome Start t + 1
A, Q realized Decisions-making P’ realized A’ Q) realized
|
Time
Value Decisions Prob. A: Value
V(P A Q) T, by A, w(P’) P =P V(P A Q)
Prob. 1 —X:
P’ ~7(P)

would implicitly impose a corner solution with perfect precision. We find it more appealing and realistic
to assume that firms can devote more or less time and resources to decision-making, thus choosing more

or less precisely. In equilibrium in our framework firms will typically prefer to make choices with an

1A one-period lag would be unrealistic if the time period were very long. But when we calibrate the model, we will
impose a monthly time period, so that a one-period lag is not excessively restrictive.

5Again, we use succinct notation, where time subscripts on the value functions represent dependence on the aggregate
state. Thus, if the aggregate state of the economy is Q;, we define V; (P, A) = V (P, A,) and O,(P, A) = O(P, A, ;). Time-
subscripted variables in equation (8) represent aggregate quantities: P = P(:) is the aggregate price level, Wy = W () is

the aggregate wage, and C; = C'(Q:) is aggregate consumption demand.
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interior degree of precision. Therefore their chosen action will not always be the one that would have
been optimal in the absence of decision costs; instead, most choices will involve some degree of “error”.
Consistent with this general description, we adopt the “control cost” approach from game theory
(see Van Damme 2002, Chapter 4). A key feature of this approach is that we model the price decision
indirectly: the firm’s problem is written “as if” it chooses a probability distribution over prices, rather
than choosing the price per se.5 The problem incorporates a cost function that increases with precision:
concentrating greater probability on a smaller range of prices increases costs. Many measures of precision
could be used to define this cost function; we choose a definition based on relative entropy, also known
as Kullback-Leibler divergence, which is a measure of the difference between one probability distribution
and another. For two possible distributions 71 (z) and m2(x) of some random variable = with support on

set X, the Kullback-Leibler divergence D(m||m2) of w1 relative to 72 is defined by’

Dt ||m) = /Xm(x) In (7”(”“")> da. ()

()

Following Stahl (1990) and Mattsson and Weibull (2002), we assume that the decision cost is propor-
tional to the Kullback-Leibler divergence of the chosen distribution, relative to an exogenous benchmark
distribution. This means that if no decision costs are paid, the action x is distributed according to the
benchmark distribution. But by putting more effort into the decision process, the decision-maker can
shrink the distribution of the action towards the most desirable alternatives.

We assume that decision costs are denominated in units of time, since we regard managers’ time as
the main input to decision-making. The only control variable that the firm must manage is its nominal
price. We regard each adjustment of the nominal price as a costly decision; hence when the firm sets a
new nominal price P, this remains constant in nominal terms until the firm again chooses to make an
adjustment. We benchmark the cost of the decision process against an exogenous benchmark distribution
77t(]3) with support I'Y' .8 The time subscripts on 7; and T’} allow the benchmark price distribution to
change over time, which allows the economy to have a nominal trend; later we detrend the model by

restating it in real terms.

Assumption 1. The time cost of choosing a distribution w(ﬁ) over nomainal prices P e rr

is kxD(7||ne), where kx > 0 is a constant, and n(P) is an exogenously-given benchmark

distribution with support T'Y .

Here k, represents the marginal cost of entropy reduction, in units of labor time. The cost function
described in Assumption 1 is nonnegative and convex.? The upper bound on the cost function is associated

with a distribution that places all probability on a single price P (concretely, costs are maximized when

5Luce (1959) and Machina (1985) are early advocates of analyzing decisions in terms of a probability distribution over
alternatives; this approach is also adopted by Sims (2003). See Chapter 2 of Anderson et al. (1992) for discussion.

"While we write (9) with an integral, we can be agnostic at this point about whether X is a discrete or continuous set.
If it is a continuous set, then 71 and 72 should be interpreted as density functions. If it is a discrete set, then 7 and 72
should be interpreted as vectors of probabilities, and the integral in (9) should be interpreted as a sum.

80ur setup imposes a control cost function with an exogenously-given default distribution. Steiner et al. (2017) show
that a general dynamic rational inattention problem is equivalent to a control cost problem with an optimally chosen default
distribution. Fixing the default distribution exogenously greatly improves the numerical tractability of our framework, but
still yields a form of stickiness similar to that obtained from rational inattention.

?Cover and Thomas (2006), Theorem 2.7.2.
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all probability is placed on one price that minimizes the benchmark probability 7,(P)). The lower bound

on this cost function is zero, associated with choosing the distribution 7(P) equal to the benchmark
distribution 7;(P).
Now consider the pricing decision under this cost function. If the firm sets a new nominal price P at

time ¢, this new price only becomes effective at ¢ + 1, so the value of setting Pattis

P! (Cyy1)

VAR A = BT @

‘/t-‘rl(ﬁv A/)‘ A:| ) (10)
where E; [o| A] represents an expectation over the time t+1 variables Q' = Q; 11 and A’ = A, ;1 conditional
on the time ¢ aggregate state €); and firm j’s time ¢ productivity A;; = A. Following the control costs
methodology, we assume the firm maximizes its value by allocating probability across possible nominal
prices ﬁ, taking account of decision costs, as follows:

w(P)

V,(4) = Iﬁaﬁ))c/ﬂ(P)Vte(P, A)dP — KWWt/W(P) In (m@) dP  st. /W(P)dp =1 (11

Note that the decision costs in (11) are converted to nominal units by multiplying by the wage rate. We
write the nominal value of the pricing decision as V;(A), where A = Ajy is the firm’s current productivity.
The first-order condition for 7(P) in problem (11) is!

er D W(ﬁ)
VEP,A) — ey (14 | D22 ) — =0,
A (+ (m<P>>> g

where p is the multiplier on the constraint. Some rearrangement yields a weighted multinomial logit

nt(ﬁ) exp (V‘Z(i%;q))

formula:

Jor m(Pyexp (052 ) ap

The parameter x, in the logit function can be interpreted as the degree of noise in the decision process;

(12)

m(P|A)

in the limit as kK — 0, (12) converges to the policy function under full rationality, so that the optimal
price is chosen with probability one. Plugging the logarithm of 7; into the objective, we can also derive

an analytical formula for the value function:

Vi(A) = kWi In (/ nt(P) exp (W) d]5> . (13)

This formula gives the firm’s nominal value when adjusting its current price, net of decision costs.

Some interpretive comments may be helpful at this point. First, although we write the firm’s problem
“as if” it chooses a probability distribution over prices, this should not be taken literally— actually
choosing a distribution would be a complex, costly diversion from the true task of choosing the price
itself. Rather, we define the decision as a choice of a mixed strategy because this is a way to incorporate

errors into the model. And we describe it as an optimization problem because this disciplines the errors;

10Note that if we take future values Vf(ﬁ, A)dﬁ as given, problem (11) maximizes a concave objective subject to a linear
constraint. Therefore a unique maximum exists for any given backwards induction step.
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it amounts to assuming that the firm devotes time and effort to avoiding especially costly mistakes.
Aspects of the model that we do take seriously include (a) making decisions is costly in terms of time
and other resources; (b) therefore decision-makers do not always take the action that would otherwise be
optimal; (¢) ceteris paribus, more valuable actions are more probable; (d) in a retail pricing context, these
considerations apply to the timing of price adjustment, in addition to the actual price chosen, as we will
see in the next subsection.

Second, the problem is written conditional on the true expected discounted values Vf(ﬁ,A) of the
possible nominal prices 15, instead of conditioning on a prior, as a “rational inattention” model would.
This reflects the fact that we are not assuming imperfect information. But this is different from saying
that the firm “knows” the true values Vte(ﬁ, A). Instead, our interpretation is that the firm has sufficient
information to calculate Vf(ﬁ , A). Even so, drawing correct conclusions from that information, and acting

accordingly, may be costly.!!

3.2.2 Choosing the timing of price adjustment

We next analyze, in an analogous manner, the decision whether or not to adjust at time ¢. As in Sec.
3.2.1, we define costs relative to a benchmark probability distribution over possible actions. But for this
decision, at any t, there are only two options: adjust now, or not. Since the probabilities of these two
alternatives must sum to one, effectively the relevant benchmark is just a single number, which we can
interpret as an exogenous default hazard rate.

We suppose the time period is sufficiently short so that we can ignore multiple adjustments within a
single period. If the firm chooses not to adjust its current price P, then its nominal price next period will
be unchanged: P = P; the expected value of this unchanged price, from the point of view of period t, is
Ve(P, A). If instead the firm adjusts its price at time ¢, then its expected value is V;(A), as given by (11)
and (13). Now suppose it adjusts its price with probability \. We measure the cost of this adjustment
probability in terms of Kullback-Leibler divergence, relative to some arbitrary Poisson process with arrival

rate \:

Assumption 2. The time cost incurred in period t by setting the price adjustment hazard
A € [0,1] in period t is kD((A\, 1 — N)||(X\,1 = X)), where ky > 0 and X € [0,1] are exogenous

parameters.

Here ) is the marginal cost of entropy reduction in the timing decision, which might or might not equal
the corresponding parameter x, from the pricing decision.
Rewriting this cost function using definition (9), the optimal adjustment probability at time t solves

the following Bellman equation:

Oi(P,A) = max (1= NV (P, A) + AVi(A) — kAW, [A In (;) +(1—=X\1In G_;)} . (19

Since economists are accustomed to models of perfect rationality, they often equate observing a given information set
with knowing all quantities that can be calculated from that information set. But when rationality is less than perfect, we
cannot equate these two assumptions. Here, we assume firms can observe all relevant shocks and state variables, but we
do not equate this with actually knowing Vf(ﬁ, A) or knowing the optimal action, and therefore we do not equate it with
implementing the optimal action with probability one.
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Recall that Oy(P, A) represents the continuation value of the firm, net of decision costs, when it still has

the option to adjust, or not to do so. The first order condition from (14) is
VE(P,A) = Vi(A) = ;W [InA+1—In A —In(1 = \) — 1+ In(1 — N)]. (15)

Rearranging, we can solve (15) to obtain'?

A
M(PA) = — — , (16)
A+ (1—A)exp (%)
where Dy(P, A) is the expected gain from adjustment:
Dy(P, A) = Ti(A) - VE(P, A). (17)

The hazard (16) is a weighted binary logit, which was also derived by Woodford (2008) from a model
with a Shannon constraint.'® The free parameter A\ measures the rate of decision making; concretely, the
probability of adjustment in one discrete time period is A when the firm is indifferent between adjusting
and not adjusting (i.e. when D;(P, A) = 0).14

3.2.3 Deriving the Bellman equation

Next, to calculate the value function V;(P, A), we concatenate the two decision steps described in Secs.
3.2.1-3.2.2. If the firm starts period ¢ with nominal price P, then its value V;(P, A) = V;(P, A, ) at the

beginning of ¢ satisfies:

Vi(P,A) = )\mz(a%c) (P—Iizt

- Mﬂwt/w(ﬁ) In (;Tt((?)) dP — kW, [)\ln <;> +(1-MNh G:;)]

s.t. /w(ﬁ)dﬁ =1

) CLPEP™ 4+ (1 — A)VE(P, A) + A / T(P)VE(P, A)dP (18)

This Bellman equation subtracts off the two cost functions seen in the previous subsections.'® There is a

time cost associated with monitoring whether or not a price adjustment is required, which we will call

(P, A) = ky [A In G) +(1-\ G‘i)] . (19)

2Note also that (16) has a well-defined continuous-time limit. If X is a continuous-time constant hazard against which we

benchmark the costs of a time-varying hazard ), then the continuous-time analogue of (16) is A\:(P, A) = Xexp (%).

BWoodford (2009) only states a first-order condition like (15); his (2008) manuscript points out that the first-order
condition implies a logit hazard of the form (16).

14 This model nests Calvo price adjustment as a special case. If we set £, = 0 and x\ = 0o, then the firm always sets the
optimal price, conditional on adjustment, and adjustment occurs with a constant probability .

15For expositional transparency, we described pricing and timing above as two separate decisions, each associated with
its own cost function. However, these two steps can equivalently be rewritten as a single decision, subject to a single cost
function, encompassing the alternatives of non-adjustment or of adjustment to any Pe I'?. For details, see CN19, Sec.
2.2.1. We will see below that the worker’s problem must generally be written as a single combined decision, except in the
special case of linear labor disutility.
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The time cost of choosing which new price to set is

(P, A) = Mg / 7(P)In (;(g)) dpP. (20)

Finally, the time devoted to the actual production of goods will be written as

Ny(P, A) = % (?)6. (21)

Hence, the firm’s total demand for labor hours is N¢(P, A) + (P, A) + (P, A).

3.3 Labor market

We next construct a model of nominal wage rigidity analogous to our treatment of nominal price rigidity.
We suppose each worker ¢ is the monopolistic supplier of a specific type of labor H;;, sold at wage Wy,
per unit of time. The productivity of worker ¢’s labor H;; is shifted by a shock process Z;;, which follows

a time-invariant Markov process on a bounded set, Z;; € I'Y C Z, 7]. We will define N;; = Z;;Hy as

Wit
Zit *

The idiosyncratic shock process Z;; represents worker-specific productivity dynamics, which may include

the “effective labor” of worker ¢. By this definition, we can say that the price of effective labor is

various forms of human capital accumulation.
Firm j’s labor input into goods production, Nj;, is defined as a CES aggregate across varieties of

effective labor ¢, with elasticity of substitution ¢,,. That is,

1 ep—1 T
Nji = {/ Nij;" di} . (22)
0

It is straightforward to show that under this demand structure, the firm’s optimal hiring satisfies

“i't 7 -1 ”zt o
gt Zit it ( Wt gt ( )

when we define the wage index

W, = {/01 (Z >1_6n di}l_len. (24)

Firm j’s nominal wage bill for goods production is then

1
/ Wit Hjpdi = WiNj. (25)
0

We assume that firms use the same CES mix of labor for decision making that they use for goods

production. Then (23) implies that total demand for worker i’s time is Hy; = Hy (Wi, Zit), defined by

Wi\ ™
H;; = Z,L»Et"_1< Z) Ny = Ht(WihZit)a (26)
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where V; represents aggregate labor demand by all firms. N; includes labor demand for goods production,
given by (21), and labor demand for decision making, given by (19)-(20).

The worker adjusts her nominal wage W;; intermittently to maximize the value of labor income net
of labor disutility. She faces control costs, both on her timing decision, and on the choice of which
wage to set. We assume workers act in the interest of the households of which they form part, and that
their consumption is fully insured by the household; hence they discount future income at the same rate
Bg’;zlfta that applies to the household and firm. Now let L;(W, Z) be the nominal value of a worker
with wage W and productivity Z at the beginning of period t, before supplying labor, and before making
any decisions. As in the case of price decisions, we assume that a wage adjustment in period ¢ becomes

effective in period t + 1. Therefore the value of setting the nominal wage to an arbitrary new value W is

2.

We make two assumptions about workers’ decision costs that follow our earlier treatment of firms:

P! (Cyy1)

SR VY NG T
P/ (Cy) s )

LYW.,Z) = E, |8

Assumption 3. The time cost of choosing a distribution WW(W) over nominal wages W e ryY
is kwD(TW||ntV), where Ky > 0 is a constant, and nIYV(AW/) is an exogenously-given benchmark

distribution with support T}V .

Assumption 4. The time cost incurred in period t by setting the wage adjustment hazard
p € [0,1] in period t is k,D((pt, 1 — pe)||(p, 1 — p)), where k, > 0 and p € [0,1] are exogenous

parameters.

Now, let 7% be the (expected) amount of time dedicated in period ¢ to setting a new wage, and let u* be
the time dedicated to monitoring whether it is a good moment to reset the wage. We can then write the

worker’s wage setting problem similarly to the pricing problem (18):

P,
L(W,2) = max  WH(W,Z) — — A~ X(H, (W, Z) + 7% + u®) +
TW W oW (W) U (Ct)
H U= pLUZW) 4 p [ AV VILET.2a0 (21)
s.t. /FW(W)dW =1,

W (W) i T
”““’/ (W(W))dw o

k) [pln <g> +(1-p)n G:Z)] — (28)

Notice that (28) allows for a nonlinear labor disutility function X; this function is scaled by the factor
P,/u'(C) to express the whole Bellman equation in nominal units.

Recall now that we stated the firm’s decision in two separate steps, (14) and (11), representing the
decision of whether or not to adjust prices, and the decision of what price to set conditional on adjustment,
respectively. This decomposition was possible because we assumed the firm could hire any quantity of

labor at the (aggregate) wage rate W;, making its labor costs a linear function of its labor demand. But
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imposing a linear cost function for a worker’s time use would be highly restrictive. We will compute an
example with a linear labor disutility function X (h) = xh in Sec. 4.1, but we will find that a more general,
nonlinear specification X (h) = X% is needed to match wage adjustment data. But therefore we cannot
simply condition on a given, constant marginal cost of labor: time supplied to firms affects the marginal
cost of time used for each type of decision-making, so the two decisions are analyzed simultaneously in
the wage setting problem (28).

Nonetheless, the policy functions for wage setting and wage adjustment timing resemble the policy
functions from the firm’s problem. Following our previous calculations, we find that if the worker adjusts,

she chooses the following density over nominal wages W

_ ot () (5 )
' (WIW,2) = (29)

= Le(W'.Z ’
Sl vryexp (LTS ) aw

where x,(W, Z) denotes the marginal disutility of time in period t¢:

_ Py / tot
w(W.2) = Loy X HZ (W, 2). (30)

This depends on the worker’s total time use H{°'(W, Z):
H{*(W,2) = H(W,Z) +7°(W, Z) + iy’ (W, Z), (31)

which sums the labor hours H; (W, Z) demanded by employers, plus the two components of time implied
by the worker’s wage decision process, (W, Z) and pui’ (W, Z). Note also that (30) rescales disutility to
nominal units, for commensurability with the value function L°.
Likewise, if the worker’s beginning-of-period wage and productivity are W and Z, her optimal adjust-
ment probability must satisfy:
p(W,2) = . (2)

- B -DVw,2)\ ’
p+(1—p)eXP<W>

where

DY (W,2) = L(W,Z) — Li(W, Z) (33)

represents the gain in value from adjusting rather than leaving the nominal wage unchanged. The value

of adjusting (net of decision costs) has an analytical solution analogous to (13):

LW, Z) = ruas(W, Z) In ( [t e (%) dﬁ) . (34)

The key to solving the worker’s equations is to calculate the marginal disutility of time, z;(W, Z).
Note that if the aggregate variables P, Wi, C;, and N; are known, then the labor demand function
Hy(W, Z) is known from (26). Then, in a context of backwards induction, where the function L§(W, Z) is
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known, we can use a fixed-point calculation to find x4(W, Z). By guessing the function (W, Z), we can
construct the probabilities and the hazard rate from (29) and (32), and then calculate the decision time
components 7 (W, Z) and py’ (W, Z) from the constraints on problem (28). This then gives us total time
use H°Y (W, Z), so we can update the function x,(W, Z) using (30).1¢

While this fixed point calculation suffices to find x;(W, Z) and thereby solve the worker’s problem,
it can be avoided in the linear disutility case, where the marginal value of time z; = Pyx/u/(Cy) is
independent of the idiosyncratic state (W, Z). This makes the worker’s problem much easier to solve
under linear disutility than it is in the general nonlinear case.!” For this reason, in Sec. 4.1 we first
compute an example with linear disutility, before attempting the higher-dimensional calculation of the

nonlinear case in Sec. 4.2.

3.4 Detrending

Before we describe the dynamics of the distributions of firms and workers, it is helpful to remove the
model’s nominal trend. If we choose the default distributions for nominal prices and wages, 1/ (ﬁ) and
nV (W)7 so that they can be interpreted as unchanging distributions 7?(p) and n"(w) of real prices and
wages, then the firms’ and workers’ decision problems are homogeneous of degree one in nominal prices,
so their Bellman equations can be stated in real rather than nominal terms.

Let ; be a nominal aggregate state variable for this economy at time ¢. This implies that there exist

functions P and W that define the nominal price level and the nominal wage level as a function of {2;:
P= P(y), (35)

W, = W(). (36)

We will define real variables by dividing by the aggregate price level, and we will treat all idiosyncratic

real variables in logs. In particular, we define the following idiosyncratic quantities:

pjt = InPj—InP(Q), (37)
Pji = InPj—1InP(Q), (38)
ajp = InAj, (39)
wip = InWy —In P(y), (40)
Wi = WmWy —InP(Q), (41)
zip = InZy, (42)
§it = x(Wit, Zit, )/ P(Qe). (43)

16 As we showed earlier for the worker’s problem, problem (28) can be rewritten in terms of a single entropy cost term (a
convex function) and a linear objective function. Since labor disutility is also convex, a unique well-defined solution exists
for the maximization problem involved in a single backwards induction step. This allows us to conclude that the algorithm
described here to calculate z:(W, Z) has a unique fixed point, which characterizes the marginal value of time in problem (28).

'"While the worker’s logit formulas (29) and (32) look superficially similar to the firm’s logits (12) and (16), the worker’s
problem is generally much harder, because the value of time varies with the worker’s idiosyncratic state (W, Z). Assuming a
constant marginal disutility reduces the worker’s problem to make it similar to the firm’s problem, since the firm’s marginal
cost of time, W4, is independent of the firm’s idiosyncratic state (P, A).
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Defining the default distributions of real prices and wages to be time invariant places obvious restrictions
on the default distributions of nominal variables. In particular, for any P = P(Qt)eﬁ, we must have
nf (P) = P~1nP(p). Likewise, given W= P()e?”, we must have nfv(/l/l\;) = W‘ln“’(&?).ls

Now let Z; be the real variable constructed by replacing all nominal state variables that are included
in Q; by their log real counterparts, and by likewise replacing any distributions of nominal idiosyncratic
state variables that are included in Q; by the corresponding distributions of log real state variables.'” It
is reasonable to conjecture that =; is a valid real aggregate state variable for this economy at time ¢. If
so, there must exist functions m, w, and 7 that determine the real money supply, the real aggregate wage,

and the inflation rate in terms of =:

my = My/P(Q) = m(Z), (44)
we= W()/P() = w(E), (45)
it = InP(Q) —InP(Q_1) = i(E,Er1). (46)

Likewise, aggregate consumption and labor must be functions of the real state, so that

C(Et) = Ct = C(Qt), (47)

n(Z) = Ny = N(Qy), (48)

and firm-specific labor demand can be written as

hw, z,Z) = H(P(Q)e®,e*, Q) = e n(E)w(E,) e v, (49)

Now, given the real state variable =, the Bellman equations of the firms and workers can be rewritten

in terms of real value functions v and v® that satisfy the identities

V(P(Q)eP, e, Q)
B P(Q) ’ (50)

[
|

v(p,a, 2

(1]

v(p,a,

a, zt}. (51)

. /=
mv(p — %+1,0 7~t+1)

1870 see this, when we say that there is an unchanging distribution of p, we mean that cdff (P) = cdf?(p), evaluated

~ ~ P~ ~ ~ P~
at the point P = P.eP. Using the chain rule, this implies a%d;;t (P)Pe? = %(ﬁ). Then since n{ (P) = %(P) and

cdfP . =~ ~_
n”(p) = 25 (p) we obtain nf” (P) = P~'n”(p).

9Here we are not yet describing which variables are included in the real state Z. We will identify a candidate for the real
state Z in the next subsections, as we describe the real distributional dynamics.
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We see in (51) that, absent any nominal price adjustment, a log real price p at time ¢ becomes p — 4441

at time ¢ + 1.2° Now, the Bellman equation (18) becomes:

o(pa,Z) = max (ep—““:t’)c(zt)e@+<1—A>ve<p,a,at>+x / 7 (5)0° (5, 0, o) dp

AP (p) e?

_ AK)WU}(Et)/ﬂ_p( 5) In (Zié;;;) dp — raw(Zy) [Aln <;> +(1—=X)In G:;)]

s.t. /ﬂ'p(ﬁ)dﬁ =1 (52)

Obviously, the worker’s Bellman equation (28) can be detrended in analogy with that of the firm. To

do so, we postulate real value functions [ and [¢ that satisfy the identities

o LP(Q)e”, e*, Q)
(w,z,2) = P@) , (53)
! ( ) 7‘—‘) - P(Q) BE{ u/(C(Et)) l( t+1, a*—'tJrl)‘ a‘—‘t} . (54)

The worker’s Bellman equation can then be rewritten in real terms as follows:

X(h = v v
l(w,Z,Et) _ max ewh(w,szt) _ ( (’LU,Z,/ t):+T + )
T o, (D) u'(c(Zr))

+(1 = p)lf(w,z,E) + p / W) (W, z, Z¢)d (55)

J

st. /Ww(u;)dﬁ, _ 1
pmw/ww(w) In (Z;U((ZD di = T°,
y [pln <g) +(1—p)n (1:5)] " -

Analyzing (56), it is straightforward to show that the chosen distribution of wages takes the form

W~ ¢ (w,w
~ () exp (G )
ﬂ-;u(w’w7 Z) = le(w/ Z) ? (57)
[ (w) exp (ni&(u’v,z)) dw’

where
§(w,z) = X'(he(w, 2) + Z/((giv)z) + pi’ (w, 2)) (58)

2070 derive (51) step by step, note that

P(Qt)UI(C(QtH))
P(Qeg1)w (c(2))

_ P(Qt)u'(C(QtJrl)) eP*it+1 ,
R G oeyrice o MG A

V(P(Q:)e?, A", Quy1)

A, Qt}

A,Qt}

P(Q)v°(p,a,E) = V(P(Q)e’, e, Q) = E{ﬁ

= P()E { B%U@ —ig1,0’,Erg1)
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is the worker’s marginal disutility of time spent working, expressed in units of consumption goods. Simi-

larly, using the first-order condition for p, we derive the following adjustment hazard:

e (54in)

pexp () 4+ (1 - pexp (i)

pr(w, z) = (59)

Thus, the decision noise in both the timing choice and the wage-setting choice is proportional to the
worker’s marginal disutility of labor.

For purposes of backwards induction, to characterize the worker’s decision in a given state (w, z, Z),
it suffices to find the unique value of & (w, z) that solves (58). The time allocations to the timing decision

and the wage-setting decision are

e e e R e I e IR (60)

- m(wlw, 2)\ -
W = v In| ————= | dw. 61
T (w, z) Kwpt(w, 2) /7‘(’ (w|w, z) In ( () > W (61)
These can be calculated using (57) and (59); their sum is strictly decreasing as a function of £. Since
marginal disutility increases strictly with total time use (and since hy(w, z) does not depend on &), the
right-hand side of (58) can be viewed as a strictly decreasing function of £. Therefore (58) can be solved

by bisection to give a unique solution & (w, z) > 0 in any given state (w, z, Z).

3.5 Distributional dynamics

The distribution of firms’ prices and productivities, and likewise that of workers’ wages and productivities,
evolves over time as firms and workers respond to idiosyncratic and aggregate shocks. We first state the
equations governing the dynamics of the distribution across firms.

We continue to use the notation Pj; to refer to the nominal price at which firm j produces in period ¢,
prior to adjustment. This may of course differ from its price ]5]-,5 at the end of ¢, when price adjustments are
realized. Therefore we will distinguish the beginning-of-period distribution of prices and log productivities,
®,(Pjt, aji), from the distribution of prices and log productivities at the end of ¢, <A15t(15jt, a;¢). But instead
of tracking nominal prices Pj, it is simpler to focus on log real prices p;;. Therefore, in analogy to the
nominal distributions, we define W;(pj¢, aj¢) as the real distribution at the beginning of ¢, when production
takes place, and Elt(@t, a;jt) as the real distribution at the end of ¢. Finally, we also use lower-case letters to
represent the joint densities associated with these distributions, which we write as ¢¢(Pjs, aji), Jst(ﬁjt, ajt),
Ye(pjt, ajt), and {bvt(ﬁjt, ajt), respectively.?!

Two stochastic processes drive the dynamics of the distribution. First, there is the Markov process

for firm-specific log productivity, which we can write in terms of the following c.d.f.:

S(d'|a) = prob(a;; < a’|aj7t_1 =a), (62)

210ur notation in this section assumes that all densities are well-defined on a continuous support, but we do not actually
impose this assumption on the model. With slightly more sophisticated notation we could allow explicitly for distributions
with mass points, or with discrete support.
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or in terms of the corresponding density function:

s(a'la) = %S(a'la). (63)

Thus, suppose that the density of nominal prices and log productivities at the end of period ¢t — 1 is

¢i—1(P,a). The density at the beginning of ¢, after productivity shocks, will therefore be

du(P,d) = / s(d'|a)di—1 (P, a)da. (64)

But this equation conditions on a given nominal price P. Holding fixed a firm’s nominal price, its real
log price is changed by inflation, from p;;—1 to p;+ = pi¢+—1 — . Therefore the density of real log prices

and log productivities at the beginning of t is given by
v (i) = [ sl (65)

and hence the cumulative distribution at the beginning of ¢, in real terms, is
/ v o .
i) = [ ([ st iva) i) g (66)

The second stochastic process that determines the dynamics is the process of real price updates, which

we have defined in terms of a conditional density of logit form in (12). A firm with real log price p and

RAWt

log productivity a at the beginning of period ¢ adjusts its price with probability A (M), where

di(p,a) = v(a) —vi(p,a). (67)

Upon adjustment, its new real log price is distributed according to m(p|a). Therefore, if the density of

firms at the beginning of ¢ is ¥ (p, a), the density at the end of ¢ is given by

FuF,0) = (1 ) (‘W ’ ‘”)) ulda)+ [ A (dt(p“)> o (Pl (p, 0)dp. (68)

R)\W¢ R)\W¢

The cumulative distribution at the end of ¢ is simply given by integrating up this density:
~ P ra _
Wipa) = [ [ laidvda (69)

The dynamics of wages and worker productivities is analogous, except that an individual worker may
die and be replaced by a new worker with probability 1— Sp per period. It suffices to go directly to the real
log dynamics, without developing notation for the nominal dynamics. Let W} (wj, z;t) be the distribution
of real log prices and log worker productivities at the beginning of the period, when production takes
place, and let \Ilf (Wi, zi¢) be the corresponding distribution of surviving workers at the end of the period.

We write the densities associated with these distributions as 1% (wi, z;;) and 17 (Wy, zit), respectively.
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Now, consider a worker with real log wage w and log productivity z at the beginning of period t; she

adjusts her wage with probability p ( di (w.2) ), where

Kp&t(w,z)
d(w,z) = l(w,2) — 5w, 2). (70)

Upon adjustment, her new real log wage is distributed according to m}’(@w|w, z). Therefore, if the density

of workers at the beginning of ¢ is ¢}’ (w, z), the density at the end of ¢ is given by

@) = (1= (DN Y ur@ + [ (AL me @ e, @)

kot (W, 2 kot (w, 2)

The cumulative distribution at the end of ¢ integrates up this density:
. w z
W@ = [ [ wavivde (72)

A worker alive in period t survives to period ¢t + 1 with probability Sp. The worker’s productivity,

conditional on survival, is driven by the Markov process S%:

S?(|2) = prob(zii41 < 2|z = 2), (73)

with the following density function:

9 i
55(2 |2). (74)

s*(2']2) =
Meanwhile, holding fixed a worker’s nominal wage, her real log wage is changed by inflation, from w
at the end of ¢, to w; 141 = W; ¢ —i¢+1. Therefore the density of real log wages and log worker productivities

among surviving workers at the beginning of ¢ + 1 is given by

By (@ — i, ) = / 5*(2 |2, 2)d. (75)

Hence the cumulative distribution at the beginning of ¢ integrates up the density in (75) and adds on the

component of new-born workers, who have distribution W9:
vt = oo [ ([0 @+ i dy) ot (0= 5w (70

Taking account of birth and death matters here because it allows us to impose a productivity process
that has an upward trend over the course of an individual’s working life: a worker typically ends her
career at a wage higher than the one she started with. We find that this upward trend is important for
matching the distribution of wage adjustments. We denote the distribution of wages and productivity for

newborn workers at time ¢ by UY.
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For simplicity, we assume that the wage of a newborn worker is the wage that she would set, conditional
on her productivity, if her wage were costlessly flexible at all times. We make this simplifying assumption
to avoid modeling an initial decision-making state prior to beginning life as a worker. Since our analysis
only addresses the properties of wage changes, ignoring the level of the initial wage, this simplifying

assumption has a negligible impact on the empirical properties we will document here.

3.6 Aggregate consistency and monetary policy

When supply equals demand for each good j, total supply and demand of effective labor satisfy

1 C.
Ny —py — 1 = A—Jtdj = G4 //lbt(p, a) exp(—ep — a)da dp = ACy. (77)
0 Ajt
Here p; is total time devoted to deciding whether to adjust prices, and 7; is total time devoted to choosing

which price to set by firms that adjust:

B = / / Yi(p, a)pue(p, a)dadp (78)
n = [ [ weayntp.a)dadp (79)

where firm-specific decision times are given by (19)-(20). Equation (77) also defines a measure of price
dispersion, A; = Pf fol P]fAj_tldj7 weighted to allow for heterogeneous productivity. As in Yun (2005), an
increase in A; decreases the goods produced per unit of labor, effectively acting like a negative aggregate
productivity shock.

In nominal terms, the price level and wage level are given as follows

P(Q)' . (80)

/ / P'=¢¢,(P, A)dAdP
%% l—epn
// <Z> oV (W, Z2)dZ dW = W (Q) . (81)
Given (80), the real price level is one by definition:
//exp((l—e)p)wt(p,a)dadp = 1 (82)
The real wage level satisfies
//exp((l —en)(w — 2 (w, 2)dzdw = w(Z;) TN, (83)

On the policy side, we consider a monetary authority that generates an exogenous process for the

money growth rate. We assume the nominal money supply is affected by an AR(1) shock g,2?

gt = Qggi—1 + Ef, (84)

221n related work (Costain and Nakov 2011) we have studied state-dependent pricing when the monetary authority follows
a Taylor rule. Our conclusions about the degree of state-dependence, microeconomic stylized facts, and the real effects of
monetary policy were not greatly affected by the type of monetary policy rule considered. Therefore we focus here on the
simple, transparent case of a money growth rule.
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where 0 < ¢y < 1 and € ~ i.i.d.N(0, 03). Here g; represents the time ¢ rate of money growth:
Mi/Mi—y = e = p* exp(ge)- (85)

Seigniorage revenues are paid to the household as a lump sum transfer 7}/, and the government budget
is balanced each period, so that My = M;_1 + TtM.

To describe the aggregate state of the economy, we must take into account aggregate shocks and the
distribution of idiosyncratic states. Since nominal prices are predetermined under the timing we have
assumed here, it is natural to conjecture that the nominal state of the economy can be summarized by
the following objects:

Qe = (M, g1, D1, D). (86)

Since the model is homogeneous of degree one in nominal variables, the corresponding real state variable

would be:
Et = (gt,\I’t,\I/%U). (87)

We will show that this is indeed a valid state variable by constructing an equilibrium in terms of =.

4 Results

4.1 Special case: linear labor disutility

As we discussed in Sec. 3.3, our model is much simpler to compute when labor disutility is linear; therefore
we will explore the linear case before moving on to a nonlinear specification in Sec. 4.2. We simulate and
compare several versions of the model with varying degrees of noise in the pricing and wage-setting
processes. At the micro level, we study how decision costs affect the frequency and the distribution of
price and wage adjustments; at the macro level, we study which noise margin contributes most to the

non-neutrality of monetary shocks.

4.1.1 Parameters

Utility from consumption and money holdings, and disutility from labor, are u(C) = ﬁ(Cl_“y - 1),
v(m) = vin(m), and X(h) = ﬁxchlﬂ, respectively; we initially set ( = 0 to study the linear case.
Following Golosov and Lucas Jr (2007), we set v =2, v =1, x = 6, and € = 7, and we set the same the
elasticity of substitution across varieties of labor as that across goods: ey = 7. The discount factor is set

to = 0.9967 (a four percent annual discount rate).

Table 1: Adjustment parameters for linear disutility simulations.

ko V1 V2 V3 V4 V5 V6
kx =kx 0.017 kg Ko/10 £Kp/100 Ko Ko Ko/100
kw = kp 0.017 Ko K0 Ko ko/10  ko/100 Ko/100

Note: Baseline noise ko = 0.017 is estimated in CN18 by fitting retail price change
data.
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We simulate the model at monthly frequency on a discrete grid. The productivity processes for firms

and workers are assumed to follow discretized approximations of the following AR(1) processes:

_ , a
@jt =pPalji—1+ €, (88)
— z
Zit =pPzZit—1 T €, (89)
2
where €} and € are i.7.d. normal shocks with mean zero. Thus the variances of a;; and z; are O'Z = 1‘16;2
a
2
and 02 = 7=, where 02, and o2, are the variances of the innovations €? and €}, respectively.

1—p2>

Note that a linear disutility specification severely limits our ability to match the wage distribution,
because it means the wage is invariant to idiosyncratic productivity shocks. Therefore we postpone
estimating the productivity processes until we study the nonlinear specification. Instead, we simply fix
the standard deviations of the productivity shocks to o, = 0.06 for firms and o, = 0.04 for workers; both
productivity processes are assumed to have monthly autocorrelation 0.8. We assume two percent annual
money growth in steady state, consistent with our retail pricing data (discussed below).

To analyze the micro and macro implications of decision costs, we compare six calibrations (listed
in Table 1) that vary the noise levels Ky, k), Ky, and k,. All six calibrations are variations on the
benchmark case V1, in which the four noise parameters are set to Ky = K\ = Ky = K, = ko = 0.017,
implying substantial stickiness both for prices and for wages. The benchmark noise level k9 = 0.017 is
the estimate of CN19, who found that this value, together with A = 0.2, gave the best fit to data on the
frequency and distribution of retail price adjustments under the constraint x; = k). Following CN19, we
set both A = 0.2 and p = 0.2 in all versions V1-V6.

Versions V2-V6 vary the noise parameters while fixing all remaining parameters. Versions V2 and
V3 reduce price stickiness relative to the benchmark V1, lowering k. and ky first to x9/10 = 0.0017 and
then to ko/100 = 0.00017, which makes prices almost perfectly flexible. Specifications V4 and V5 instead
reduce wage stickiness relative to the benchmark V1, lowering both x, and x, first to xo/10 and then
to ko/100, making wages almost perfectly flexible. Version V6 assumes both margins are very flexible,

setting all noise parameters to ky/100.

4.1.2 Data

Table 2, Figure 2, and subsequent results will compare the various calibrations of our model to microdata
on price and wage adjustments. As in CN19, our pricing data come from the Dominick’s supermarket
dataset documented by Midrigan (2011).23 These data represent weekly regular price changes, excluding
temporary sales, and are displayed (in logs) as a blue-shaded histogram in the left column of Fig. 2. We
aggregate weekly adjustment rates to monthly rates for comparability with most related studies. We
exclude sales because recent literature has shown that monetary nonneutrality depends primarily on the
frequency of “regular” or “non-sale” price changes (see for example Eichenbaum et al. 2011; Guimaraes
and Sheedy 2011; or Kehoe and Midrigan 2015).

Our wage change data are from the International Wage Flexibility Project (IWFP), and are shown as
a blue-shaded histogram in the right column of Fig. 2. These data are taken from Fig. 2a of Dickens et al.

23We are grateful to Virgiliu Midrigan for making his price data available to us, and to the James M. Kilts Center at the
Univ. of Chicago GSB, which is the original source of those data.
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(2007), which documents the results of the INWFP. The figure aggregates histograms of wage adjustments
across multiple countries. While most of the underlying national data are drawn from surveys of firms,
they refer to annual nominal wage changes of individual workers who remain employed by the same firm.
The IWFP focused on annual changes because it observed a widespread tendency for wages to change once
a year for many workers in many countries, which in turn means that much of the available survey data
addresses annual changes. Clearly this makes our data on wage changes less than perfect for comparison
with our price change data, which are at weekly frequency. Nonetheless, to try to get a quantitative
benchmark for our theoretical model, we will take the IWFP data at face value.?* Therefore in Table
2 we report that the monthly frequency of nominal wage adjustment is 1/12=0.083, and we calculate

statistics about nominal wage changes directly from the IWFP histogram.

4.1.3 Steady-state results: linear disutility

Table 2 compares steady-state statistics on price and wage adjustments as the noise parameters vary. Note
first that as we move from the benchmark V1 to the low-noise specification V6, aggregate consumption
increases while total labor hours decrease. This is to be expected, as the overall efficiency of the economy
increases when there are less frictions. The price adjustment frequency more than quintuples, rising from
10.1% to 54.4% per month. The wage adjustment frequency instead rises only slightly, from 6.02% to
6.95% monthly.

There are also some small cross effects, from price rigidity to wage adjustment, and vice versa. While
decreasing wage rigidity slightly increases the price adjustment frequency (it rises from 10.1% in V4 to
10.4% in V5), a decrease in price rigidity may instead decrease the frequency of wage changes (which falls

from 7.28% in V5 to 6.95% in version V6).

As price rigidity decreases (comparing V1, V2, and V3), the absolute size of price changes falls from
8.57% to 4.76%. Likewise, their standard deviation falls from 10.6% to 5.30%, and their kurtosis decreases
from 3.20 to 1.94. Price resetting and timing costs (u and 7) fall as a fraction of revenues, and the losses
relative to the fully flexible case fall precipitously, to only a few basis points. The effects of decreased
wage rigidity are analogous. Comparing V1 with V4 and V5, the absolute size of wage changes falls
from 6.14% to 1.98%; their standard deviation falls dramatically, from 8.53% to 1.26%, and their kurtosis
likewise falls from 10.0 to 3.62. The costs associated with wage resetting and wage reset timing (¢ and
7%) almost vanish, as a fraction of labor income, in specifications V5 and V6.

Again, there are contrasting cross-effects between prices and wages. Decreased wage rigidity has no
observable effect on the absolute size of price adjustments. Decreased price rigidity is instead observed
to increase the size of wage changes (compare V5 and V6).

The statistics in Table 2 are drawn from the steady-state distributions of nonzero log price and wage
changes, which are plotted as histograms in Fig. 2. Black lines represent the predicted distributions

from the various model versions; the blue shaded areas show the distributions from microdata. The left

24Grigsby et al. (2018) study wage adjustment using higher-frequency data more comparable to those from the retail price
adjustment literature. In U.S. data from a large payroll data processing firm, they find a wage adjustment probability of
26.0% quarterly and 72.7% annually; the mean absolute wage change, conditional on adjustment, is 10.7%. Considering job
stayers only, they find a 66.3% annual wage adjustment probability, with a mean absolute change of 6.34%. While their data
support a somewhat higher degree of wage variation than the IWFP data in our graphs, nonetheless the order of magnitude
is similar.
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Table 2: Evaluating the linear disutility model with different values of kr, Ky, Ky and &,

Price setting statistics Wage setting statistics
Data V1 V2 V3 V4 V5 V6 Data V1 V2 V3 V4 V5 V6
Prices® - Stky Semi Flex Stky Stky Flex - Stky Semi Flex Stky Stky Flex
Wages® - Stky  Stky Stky Semi Flex Flex - Stky Stky Stky Semi Flex Flex
Freq. of change, %mo 102 10.1 225 544 40.1 104 544 830 6.02 6.03 6.04 641 728 6.95
Mean change, % 1.60 168 0.76 0.31 1.68 1.68 0.31 510 2.83 282 282 266 234 245
Mean abs(change), % 9.90 857 680 4.76 857 857 4.76 6.47 414 6.16 6.16 2.70 198 2.29
Std. of changes, % 13.2 1060 7.50 530 10.6 10.6 5.26 6.52 853 853 852 210 126 1.79
Skewness of changes -0.42 -0.11 -0.15 -0.08 -0.11 -0.11 -0.08 0.35 -041 -041 -0.41 -091 -1.06 -1.26
Kurtosis of changes 481 320 1.82 194 320 320 194 439 10.0 9.77 9.66 521 3.62 3.33
Percent increase 65.1 585 555 54.0 585 585 54.0 86.0 721 720 719 922 99.1 92.0
Changes < 5% 35.5 288 270 60.7 288 288 60.8 43.0 48.1 479 479 91.70 100  99.9
Changes < 2.5% 120 1420 890 199 142 142 20.0 11.8 247 246 246 574 81.1 616
Std. of prices, wages, % - 526 5.63 6.06 526 526 6.06 - 3.07 3.08 3.08 121 0.75 0.96
Resetting cost, % rev® - 0.43 0.08 0.01 043 0.43 0.01 - 0.33 034 034 0.06 0.01 0.00
Timing cost, % rev® - 034 0.05 0.01 034 034 0.01 - 038 0.38 039 005 0.01 0.01
Loss relative to flex®, % - 1.67 038 0.05 1.67 1.67 0.05 - 092 095 094 0.13 0.01 0.01

“Note: “Stky”: sticky; “Semi”: semi-flexible; “Flex”: flexible.

b Note: Costs p, u*, 7, and 7% are expressed as percentages of average revenues (for firms) or average labor income (for workers).

“Note: Gain accruing to a single firm or worker not constrained by decision costs (k = 0), relative to constrained, as % of average revenues (firms) or labor income
(workers).
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column of the figure shows how the histogram of nonzero log price changes varies as we decrease the noise
in the price decision, comparing versions V1, V2, and V3. The variance of the price change distribution
in the benchmark version V1 is similar to that of the data, though the model-generated distribution is
smoother and less bimodal than the data. As x, and k) decrease, the model histogram becomes much
more bimodal than the data, displaying two sharp spikes like those from the menu cost model of Golosov
and Lucas Jr (2007). In contrast, the right column of the figure shows that the distribution of nonzero
log wage changes remains unimodal, becoming ever more concentrated around a single sharp peak as we
decrease the noise in wages from version V1 to V4 and V5. The peak of the wage change histogram lies
above zero, reflecting the nominal trend in our simulations; likewise, the mean price change is positive.

Thus, as decision noise decreases, price adjustments increasingly resemble the familiar (.S, s) behavior
associated with a menu cost model. Errors in pricing and timing smooth out the distribution of changes
under calibration V1, but as noise is reduced, the preponderance of price changes occur around two upper
and lower thresholds. Very small changes are rare, because it is not worth paying the cost of changing
the price when it is already near its target value. The chosen decision cost k.D(7||n) decreases as kr
declines; this is why the distance between the two peaks of the price change histogram decreases as we
move down the left panels of Fig. 2 from version V1 to V2 and V3.

Linear labor disutility is the reason why the wage change histogram behaves differently than the price

change histogram in these simulations. Given linear disutility, if decisions were perfectly costless, labor

supply would respond elastically to productivity at the wage w; = ;\JIV_Xl Ju'(Cy): worker i would respond
to a positive shock to z;; by supplying all the additional labor demanded, instead of setting a higher
wage. Error-prone choice spreads wages out around this frictionless optimum, as we see in version V1
(top, right panel of Fig. 2). But as the noise in wage adjustment decreases (moving down the right panels
from V1 to V4 and V5), wage changes are ever more tightly concentrated around a single peak slightly
above zero.

The sharp peak of the wage change histogram in case V5 corresponds to small intermittent upward
adjustments in response to the nominal trend of the model. Although the worker faces idiosyncratic
shocks, it is not optimal to respond to them by adjusting the wage (given linear disutility). Similar
behavior may occur in a fixed menu cost model, if there is positive trend inflation but no idiosyncratic
shocks: although there are implicitly two “(S,s) bands”, the only observed adjustments are the upward
bumps that occur when the nominal trend drives the worker’s real wage down past its lower threshold.

This analysis points to a possible way forward for better modeling the behavior of wages. On one
hand, it will be crucial to allow for nonlinear labor disutility, so that workers have an incentive to vary
the wages in response to idiosyncratic shocks, which will spread out the distribution and possibly make
it bimodal, as is the case in the data. On the other hand, it will also be useful to allow for a trend in
labor productivity over the life cycle. The wage change histogram from the IWFP data shows far more
upward than downward adjustments. Likewise, those data imply average monthly wage growth of 0.43%
for continuing workers, while our retail price data imply that prices rise by only 0.16% per month on
average. Imposing demographic turnover on the model, so that the expected wage growth of continuing
workers can exceed that of the workforce as a whole, due to an expected positive idiosyncratic productivity

trend over the lifetime, will help match both of these facts.
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Figure 2: Distribution of nonzero price and wage changes: varying stickiness (¢ = 0).
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Notes: Black lines: model versions with linear labor disutility (¢ = 0); blue shaded areas: Data.
Left column: Effect of decreasing price stickiness (versions V1, V2, V3) on distribution of nonzero price changes.
Right column: Effect of decreasing wage stickiness (versions V1, V4, V5) on distribution of nonzero wage changes.

Figure 3 further documents adjustment behavior in our model by graphing the logit policy functions
from the benchmark case V1. The left panels display the logit probabilities of each price (wage), condi-
tional on cost, while the right panels show the adjustment probabilities conditional on the current price
(wage) and cost. Each function is graphed in two ways, for greater clarity: as a surface plot (first and
third rows) and as multiple overlaid cross-sections (second and fourth rows). The upper left panel of
the graph shows a surface plot of the logit probabilities m(p|a) as a function of the firm’s cost shock —a
and its possible prices p. Just below this, in the second row, we see the smooth, bell-shaped probability
distributions 7(p|a) corresponding to each possible productivity level a. If the firm’s cost shock is high
(i.e. a is low, shown in red in the graph) then its chosen probability distribution shifts towards higher
prices. Looking to the right column, we see that the adjustment probability A(p,a) approaches zero for
any p that is near the modal value of m(p|a).

The bottom panels of Fig. 3 are analogous, but instead show the worker’s policy functions 7% (w|z)
and p(w, z). Notice that the worker’s logit probabilities 7% (w|z) are concentrated around the same w,
regardless of z (see the bottom left panel). Regardless of her productivity shock, the worker prefers the

same real wage, which explains the tight unimodal distribution of wage changes seen earlier in Fig. 2.
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Figure 3: Adjustment behavior. Benchmark model (V1) with sticky prices and sticky wages (¢ = 0).
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4.1.4 Dynamic results: linear disutility

Next, we turn to the macroeconomic implications of the model, comparing impulse responses to money

shocks across versions V1, V3, V5, and V6 in Figure 4. The figure shows the impulse responses to a 1%

Figure 4: Money growth shock: effects of nominal rigidity. Error-prone adjustment, ¢ = 0.
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Notes: Impulse responses of inflation and consumption to money growth shock with autocorrelation 0.8
(monthly), under linear labor disutility (¢ = 0). Black: Benchmark (V1), both prices and wages sticky. Red:
V3, flexible prices and sticky wages. Blue: V5, sticky prices and flexible wages. Green: V6: both prices and
wages flexible.

money growth shock, with monthly autocorrelation 0.8, on consumption, labor, price and wage inflation,
and the real wage. In the benchmark specification V1 (black with circles), consumption and labor rise by
more than 2% on impact, then revert smoothly and gradually with a half-life of roughly six months. Price
inflation and wage inflation both rise persistently to a rate of roughly 0.5%. Wage inflation is slightly
higher than price inflation, causing the real wage to peak at roughly 0.4% above steady state after four
months.

In contrast, in the flexible specification V6 (green), both price and wage inflation spike on impact,
with an 4% jump in prices and wages. Consumption and labor increase by half a percent in the period
of impact only, then return to their steady state levels. Thus, current and expected money growth feeds
rapidly into prices, and its real impact is small and transitory.

It is particularly interesting to compare specifications V3 (red, with sticky wages but flexible prices)

and V5 (blue, with sticky prices but flexible wages). The key takeaway is seen in the response of con-
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sumption — version V3, with wage stickiness only, comes very close to the baseline model V1 with both
price and wage stickiness. The reason is that wage stickiness keeps firms’ marginal costs from adjusting

rapidly, so even though prices are much more flexible in version V3 than V1, the impulse response of price

Figure 5: Money growth shock: effects of nominal rigidity. Calvo adjustment, ¢ = 0.
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Notes: Impulse responses of inflation and consumption to money growth shock with autocorrelation 0.8
(monthly), under Calvo adjustment with linear labor disutility (¢ = 0). Black: Benchmark (V1C), both prices
and wages sticky. Red: V3C, flexible prices and sticky wages. Blue: V5C, sticky prices and flexible wages.
Green: V6C: both prices and wages flexible.

inflation is quite similar in both cases. Both wages and prices adjust gradually in version V3, giving a
real impact on consumption and output that is almost as large and persistent as we saw in case V1.

In contrast, specification V5, with sticky prices and flexible wages, implies an immediate burst of wage
inflation when the money supply shock hits— wages rise 3% on impact.?® In spite of price stickiness, this
rise in nominal marginal costs also causes prices to increase by 1.2% on impact, more than they do in cases
V1 and V3. Overall, the effect is a large increase in real wages, which discourages labor demand (firms’
profits fall sharply upon monetary stimulus) and thus drives down the persistence of the real effects of
the money shock.

Summarizing, wage stickiness is substantially more important for monetary non-neutrality than price

stickiness alone. Sticky wages imply that firms’ marginal costs only adjust slowly in response to the

25Note that the impulse responses for case V5 are quantitatively very similar to those reported in our earlier paper, CN19,
which studied a model with price stickiness only. The decision cost parameters for price adjustment in model V5 are taken
from CN19, so specification V5 essentially reproduces our previous paper’s results.
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shock, which slows down firms’ price adjustments even if prices are relatively flexible. The importance
of wage rigidity for propagation of nominal shocks to real variables provides support for New Keynesian
mechanisms in the light of empirical evidence against procyclical markups of price over marginal cost
(Nekarda and Ramey 2013). On the other hand, these findings do not offer any strong macroeconomic
reason to favor the benchmark specification V1, with both rigidities, versus version V3, where only wages
are rigid. Empirical studies rarely find a significantly nonzero response of the real wage to monetary policy
shocks (see for example Christiano et al. 2005; McCallum and Smets 2007; Olivei and Tenreyro 2007;
Christiano et al. 2016). Thus it is easy to reject the strongly procyclical real wage (and countercyclical
profits) of specification V5, but both versions V1 (with a mildly positive real wage response) and V3 (with
a mildly negative response) lie within the range of behavior consistent with macroeconomic evidence.

Finally, to isolate the effects of state-dependence in prices and wages, we compare the impulse responses
of Fig. 4 to those of an otherwise identical economy (same model, same parameters, and same finite grid
approximation) in which firms’ price changes and workers’ wage changes are governed by the Calvo
(1983) mechanism. That is, firms (workers) reset their prices (wages) with a constant, exogenously-fixed
probability per month, and the new price (wage) is optimally chosen (it is optimal taking into account the
fact that future adjustments will take place at random times in the future). For comparability with the
simulations reported previously, we impose the adjustment hazards found in our state-dependent versions
V1-V6 on the Calvo versions V1C-V6C. In other words, although the hazard is exogenously fixed in each
Calvo simulation, we vary the hazard across specifications V1C-V6C.

The Calvo simulation results are displayed in Figure 5. Three findings stand out. First, the Calvo
model generates much more persistence than the state-dependent models seen in Fig. 4; the half-life of the
impulse responses of consumption and labor rises to roughly 15 months (the time span on the horizontal
axis of Fig. 5 is twice as long as that in Fig. 4). This highlights the importance of “selection effects” in
nominal adjustments: in our logit framework, firms (workers) that face a more costly deviation between
their current and desired prices (wages) are more likely to adjust, which speeds up aggregate adjustment
relative to the Calvo framework. Second, the impulse responses of the Calvo specifications V1C, V3C,
V5C, and V6C are quantitatively quite similar (except in their implications for real wages). This reflects
the fact that the frequency of wage adjustment changes very little in our state-contingent simulations V1-
V6, and therefore the wage adjustment hazards we plug into our Calvo model do not differ much across
simulations V1C-V16. Again, wage stickiness is the more important form of nominal rigidity, so versions
V1C-V6C behave similarly even though they reflect very different degrees of price stickiness. Finally,
the qualitative behavior of (all) the Calvo specifications resemble that of our benchmark state-dependent
model V1: consumption, labor, price inflation, and wage inflation all jump on impact after a money
supply shock, and then smoothly revert to their means. The real wage rises, but by much less than it
does in state-dependent version V5. Thus, the dynamic predictions of the Calvo framework are in many
ways consistent with those of a state-dependent model, as long as we adjust hazards appropriately and

bear in mind that the Calvo setup exaggerates aggregate nominal persistence.
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Table 3: Parameters for nonlinear disutility simulations.

Parameter estimates for nonlinear disutility benchmark model (VIN):

Firms Workers
Adjustment parameters
Noise level Ka = Kx = 0.0177 Ky = Kp = 0.0275
Default hazard (monthly) A =0.2707 p=0.2317
Productivity procesées v
Persistence (monthly) P = 0.6441 p. = 0.9700
Standard deviation o, = 0.0703 o, = 0.0574

Adjustment parameters for nonlinear disutility versions:

VIN V2N V3N V4N V5N V6N
KEr = K 0.0177 0.00177 0.000177 0.01770 0.017700 0.000177
Kw = Kp 0.0275 0.02750 0.027500 0.00275 0.000275 0.000275

Calibrated utility parameters common to all versions:

Discount rate (monthly): 1—-p8=0.0033
Death probability (monthly): 1— pp =0.0021
Log productivity at birth: zo = —0.6
Intertemporal elasticity of substitution: y=2
Coefficient on utility of money: r=1
Coefficient on disutility of labor: X =
Inverse Frisch elasticity: ¢=1/2
Elasticities of substitution across varieties: e=en=7

4.2 Main results: Nonlinear disutility
4.2.1 Parameter estimation

As we discussed above, generating a nontrivial wage distribution will require nonlinear disutility of labor.
Therefore, we now compute a nonlinear specification, setting X (h) = L’ﬁ—thC, with ¢ = 0.5. We estimate
parameters for this model version by matching the steady-state model-generated adjustment hazards
and adjustment histograms to the Dominick’s pricing data and IWFP wage adjustment data discussed
earlier; the estimates are stated in Table 3. Thus, we seek to match the observed average price and wage
adjustment frequencies Apg,, and prpw p in the Dominick’s and IWFP data, as well as the corresponding
histograms of nonzero log price changes and nonzero log wage changes, which we denote by i_iDom and
H}“W pps respectively. The histograms are vectors representing the observed frequencies of price changes

lying in #pom fixed bins, and of wage changes lying in #;pwp fixed bins; thus the #pon, elements of
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vector hpem sum to one, as do the #;rwp elements of hYy, pp. The estimation routine minimizes the

following criterion:

distance = V #Dom ||)\model - >\Dom|| + ||E;Unodel - ﬁDomH

+ H#IWFP || Pmodet — prw P! + | rpmoder — RTwEPIl, (90)

where A\jodels Pmodels Emodel, and E% oder are the adjustment frequencies and adjustment histograms gener-
ated by our model, and ||e|| represents the Euclidean norm. We scale the component related to adjustment
hazards by the square root of the length of the histograms so that the hazards and the histograms are
similarly weighted in our minimization routine.

The parameters we estimate are the default hazard rates A and p; the noise parameters rk, = ry and
2 26

Kw = Kp, and the parameters of the productivity processes of firms and workers, p,, o2, p,, and o2.
The noise parameters and default hazard rates all rise moderately compared with the values assumed in
our earlier linear simulations. Our estimates suggest that workers’ productivity is much more persistent
than we assumed earlier (and it is much more persistent than the productivity of firms); in fact, the
parameter hits the boundary value, 0.97, which we imposed on the estimation routine.?” The estimated
version is called VIN; we then vary the stickiness of prices and the stickiness of wages, as before, defining
the versions V2N - V6N described in the table. Calibrated utility parameters are as before (y = 2, v = 1,
X = 6), taken originally from Golosov and Lucas (2007), except that the Frisch elasticity of labor supply
is now ¢(~! = 2. The overall discount rate is set to 1 — 3 = 0.0033, which combines pure time discounting
with the probability of death. The monthly death probability is 1 — p = 0.0021, implying an expected

working life of forty years. The log productivity of newborn workers is set to -0.6; since the productivity

process (89) converges to zero over time, workers expect a 60% productivity gain over their life cycles.

4.2.2 Steady-state results: convex disutility

Table 4 reports steady-state statistics for this parameterization, comparing versions with different combi-
nations of noise parameters (VIN-V6N) as we did previously in Table 2. As in the linear case, decreased
noise in price setting or wage setting makes adjustment more frequent. Crucially, the rise in the frequency
of monthly wage adjustment is now very large, from 8.34% in version VIN to 30.8% in version V6N, while
in the linear case this frequency only rose by one percentage point between versions V1 and V6. Relat-
edly, lower noise implies smaller absolute price and wage changes, a lower standard deviation and kurtosis
of price and wage changes, and more of the smallest changes (less than 5% or less than 2.5%). Price
adjustment and especially wage adjustment are significantly more costly here than they were in the linear
case, both because of the higher estimated noise parameters and because convex labor disutility means

that some adjustments are particularly costly, on the margin.?®

26Since minimizing (90) involves computing the model’s steady-state only, our estimation strategy is computationally
feasible when run in FORTRAN.

2"We are obliged to place an upper bound on the persistence of productivity in order to keep the processes inside the
finite grid on which we perform the simulations.

28In particular, a high productivity worker with an excessively low wage will have a high marginal disutility of time,
making it costly to set a new wage precisely.
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Overall, the behavior of price and wage statistics in the nonlinear specification is similar to that in the
linear case. The main difference is visible in the histograms shown in Figure 6. When prices and wages are
sticky, both histograms are smooth and display rather fat tails; price adjustments are mildly left-skewed

while wage adjustments are mildly right-skewed. As prices (wages) become more flexible, the price (wage)

Figure 6: Distribution of nonzero price and wage changes: varying stickiness (¢ = 0.5).
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Notes: Black lines: model versions with nonlinear labor disutility (¢ = 0.5). Blue shaded areas: Data.
Left column: Effect of decreasing price stickiness (versions VIN, V2N, V3N) on distribution of nonzero price changes
Right column: Effect of decreasing wage stickiness (versions VIN, V4N, V5N) on distribution of nonzero wage changes.
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Figure 7: Adjustment behavior. Benchmark model (V1N) with sticky prices and sticky wages (¢ = 0.5).
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four panels) under nonlinear labor disutility (¢ = 0.5).

Left panels: 3d plots of conditional price (wage) choice probabilities, and 2d slices showing price (wage)
choice probabilities conditional on each possible cost (productivity).

Right panels: 3d plots of conditional adjustment hazards, and 2d slices showing adjustment hazards
conditional on each possible cost (productivity).

Colors in 2d plots: For firms, green represents low cost (high a). For workers, green represents high
productivity (high z).
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Table 4: Evaluating the nonlinear LPW model with different values of £, k), Ky and &,

Price setting statistics Wage setting statistics
Data V1 V2 V3 V4 Vb V6 Data V1 V2 V3 V4 Vb V6
Prices® - Stck Semi  Flex Stck Stck  Flex - Stck  Semi  Flex Stck Stck  Flex
Wages® - Stck  Stck  Stck Semi  Flex  Flex - Stck  Stck Stck Semi  Flex  Flex
Freq. of change, %mo 10.2  10.2 24.8 59.5 10.2 10.2 59.7 830 834 833 833 134 30.8 30.7
Mean change, % 1.60 1.67 0.69 0.29 1.67 1.67 0.29 510 3.00 3.01 3.01 1.86 0.81 0.81
Mean abs(change), % 9.90 694 6.06 4.53 6.92 6.92 4.52 6.47 550 550 550 3.17 195 1.96
Std. of changes, % 132 896 6.70 5.03 894 893 5.03 6.52 4.74 6.73 6.72 299 195 1.95
Skewness of changes -042 -0.12 -0.15 -0.06 -0.12 -0.12 -0.06 0.35 043 0.17 0.17 -0.56 -0.46 -0.46
Kurtosis of changes 4.81 4.60 1.85 2.01 4.60 4.60 2.01 439 119 11.80 11.70 2,56 2.00 2.00
Percent increase 65.1 56.5 53.9 524 56.5 56.5 524 86.5 70.6 70.6 T70.6 73.2 66.8 66.8
Changes <5% 355 45.0 364 652 450 450 65.3 43.0 60.8 60.8 60.8 934 100 99.9
Changes <2.5% 12.0 273 13.80 25.7 273 273 25.8 11.8 252 252 252 332 80.2 80.0
Std. of prices, wages, % - 3.73  4.10 4.57 3.72  3.72  4.57 - 486 7.8 7.8 790 794 7.94
Resetting cost, % rev? - 0.50 0.20 0.07r 0.49 0.49 0.07 - 1.09 1.09 1.10 0.27 0.08 0.08
Timing cost, % rev® - 0.48 0.10 0.03 048 0.48 0.03 - 094 095 095 0.14 0.03 0.03
Loss relative to flex¢, % — 249 1.39 1.01 248 248 1.01 - 2707 208 279 075  0.29 0.29

“Note: “Stky”: sticky; “Semi”: semi-flexible; “Flex”: flexible.

®Note: Costs i, u*, 7, and 7 are expressed as percentages of average revenues (for firms) or average labor income (for workers).

¢Note: Gain accruing to a single firm or worker not constrained by decision costs (k = 0), relative to constrained, as % of average revenues (firms) or labor income
(workers).
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adjustment histogram becomes sharply bimodal. This contrasts with our earlier linear specification, in
which the wage adjustment histogram collapsed to a single sharp peak, reflecting the absence of incentives
to adjust wages in response to idiosyncratic productivity shocks.

Likewise, by comparing Figure 7 with our previous Fig. 3, we see that the policy functions of the
nonlinear case are similar to those from the linear case, except that the worker in the nonlinear version
sometimes desires large idiosyncratic wage changes. The figure shows the logit probabilities governing
price resets and wage resets (left panels) and firms’ and workers’ adjustment hazards (right panels). In
each case the probabilities are shown as functions of the price-cost (resp. wage-productivity) pairs. As in
Fig. 3, firms prefer higher prices when costs are higher, and the probability of adjustment rises smoothly
as firms deviate from the prices they prefer (conditional on costs). In contrast with Fig. 3, we now see that
workers also set substantially higher wages as their productivity rises. The preferred wage now varies by
roughly +30% as worker productivity varies between its maximum and minimum values in the Tauchen
(1986) grid approximation, which differ by +45%.

By estimating parameters for the nonlinear case, we have also improved the model’s fit to the wage
data in the baseline parameterization VIN. In Fig. 2, the wage adjustment histogram was smooth and
almost symmetric, but now in Fig. 6, the histogram of wage adjustments has a more complex shape, with
heavy tails. Likewise, the IWFP histogram (blue shaded area) has a lot of weight in the tails. Most of
the mass is concentrated on small positive wage adjustments, but there is a fat right tail and a long,
thin left tail, and there seems to be some “missing mass” of small negative adjustments. This pattern is
usually taken to indicate downward nominal rigidity. It is interesting that our model, in which rigidities
are entirely symmetric, also seems to show some “missing mass” just below zero, although this effect
is weaker than it is in the IWFP data. While downward adjustments are no more costly than upward
adjustments in our model, workers have little incentive to make small negative adjustments because they
expect their productivity to grow as they age, and because nominal prices have an inflationary trend.
Thus, while workers have an incentive to set a higher wage when they become more productive, they can

react to small negative productivity shocks by waiting for price inflation to reduce their real wage.

4.2.3 Dynamic results: convex disutility

We now return to the issue of monetary non-neutrality. Figure 8 shows the effects of an autocorrelated
money growth shock with monthly persistence 0.8. The figure compares the responses of price and wage
inflation, consumption, hours and the real wage as price and wage stickiness vary, across models V1IN,
V3N, V5N and V6N. As before, the sticky-price, sticky-wage specification implies substantial real effects:
consumption and labor rise 2.5% on impact, with a half-life of seven months. The version with reduced
wage stickiness (V5N) has similar real effects on impact, but much lower persistence, because it implies
a large and persistent increase in real wages that offsets firms’ incentive to demand more labor. As
expected the smallest real impact comes from version V6N, which has very low persistence, as in the
Golosov and Lucas Jr (2007) menu cost model. Again, we find that the real effects of money shocks are
large as long as wages are sticky. Version V3N (sticky wages and flexible prices) has almost the same

consumption response as V1IN, and lies substantially above V5N (flexible wages and sticky prices). So
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Figure 8: Money growth shock: effects of nominal rigidity. Error-prone adjustment, ¢ = 0.5.
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Figure 9: Money growth shock: effects of nominal rigidity. Calvo adjustment, ¢ = 0.5.
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(monthly), under error-prone adjustment (Fig. 8) and Calvo adjustment (Fig. 9), assuming nonlinear labo:
disutility (¢ = 0.5).
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Figure 10: Comparing small and large money supply shocks. Benchmark model (VIN).
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again, the key takeaway is that wage rigidity matters more than price rigidity for the overall degree of
monetary nonneutrality in this model.

Qualitatively similar results are found under a Calvo specification. Note that our state-dependent
model generates substantially different adjustment hazards across model versions, with the wage adjust-
ment hazard rising above 30% in versions V5N and V6N. Figure 9 shows impulse responses under Calvo
specifications in which we change the adjustment hazards to reflect the hazards obtained from the state-
dependent model versions shown in Figure 8. Therefore, unlike what we found in our linear disutility
exercise, the real effects now differ substantially across the Calvo specifications. In fact, this makes our
Calvo simulations resemble our state-dependent simulations on many dimensions. The big difference
between the state-dependent simulations and the Calvo simulations is that the latter have substantially
greater persistence: the half-life of the consumption response is more than twice as long in the VICN

simulation as it is in the estimated state-dependent case V1N.

4.2.4 Nonlinearities in inflation dynamics

Next, we discuss several aspects of our model’s dynamics that are highly nonlinear. Figure 10 shows that
as money supply shocks become larger, their impact falls proportionally more on inflation and less on
the real economy. The left panel documents the cumulative consumption impact of one-time, permanent,
uncorrelated shocks to the money supply varying in size from two to ten percentage points. A two-
percent jump in the money supply causes a small, persistent rise in inflation, and a persistent increase
in consumption that peaks at 0.8% on impact, and cumulates to a total stimulus of 2.7% over time.
The impact effect on consumption increases to 1.4% (1.8%) for a four (six) percent jump in the money
supply; but the persistence of the real effects drops rapidly with the size of the shock, so the money
growth shock that maximizes the cumulative real change is actually slightly less than four percent. The

reason is that larger shocks give firms and workers ever stronger incentives to adjust prices and wages
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Figure 11: Impulse responses at varying trend inflation rates. Benchmark model (V1N).
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immediately (a stronger selection effect), as the right panel shows. Thus, most of the nominal reaction
occurs immediately, making the real effects smaller. For money supply shocks of 6% or more, the real
stimulus on impact shrinks, and the brief initial rise is followed by a prolonged slump in consumption and
labor due to inflationary distortions.?”

Finally, in the context of the current prolonged episode of low inflation, it is interesting to ask how our
model’s behavior changes with trend inflation. Figure 11 and Table 5 document some of the differences
across annual trend inflation rates from -1% to 10%. The figure compares the impulse responses of
our estimated benchmark model VIN to a 1% money supply shock (with monthly autocorrelation 0.8,
as before) as trend inflation varies. The largest real effects are obtained when trend inflation is zero
(orange); they are slightly smaller at either plus or minus one percent trend inflation (yellow and light
blue respectively). While there is little difference in the contemporaneous impact of money on consumption
across trend inflation rates, higher trend inflation rapidly lowers the persistence of the real effects. The
half-life of the consumption response falls from 10 months at 0% trend inflation to seven months in
the baseline simulation (purple), which features 2% trend inflation; and it falls to four months at a ten
percent trend inflation rate. Moreover, these moderate changes in trend inflation have a big impact on
the inflation response to a monetary shock: inflation rises more than twice as much on impact, starting

from 5% trend inflation, as it does after the same shock in the absence of a nominal trend.

29Gimilarly, Alvarez and Lippi (2014) showed that there are decreasing returns to monetary stimulus in state-dependent
pricing models. They argue that the peak effect occurs for a money shock that is roughly half the size of firms’ idiosyncratic
shocks, consistent with our findings here.
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Stated differently, if we define the “Phillips multiplier” as the ratio of the nominal and real effects
of a monetary shock, then Table 5 shows that this multiplier is more than doubled as trend inflation
rises from 0% to 5%. There are several alternative ways to measure this ratio. On the price-setting side,
we define it as the ratio of the change in retail price inflation to the change in log consumption; on the
wage-setting side, we define it as the change in wage inflation over the change in log employment. The
ratio may be calculated on impact, or in long run terms as the ratio of the area under the price (wage)
inflation impulse response to the area under the log consumption (employment) impulse response.?* The
increase in the long-run Phillips multiplier is especially large— for example, on the wage side it rises from
0.14 at 0% trend inflation to 0.34 at 5% annual trend inflation.

These results suggest that our model may help explain the notably flat Phillips curve that has been
observed in recent years. For example, Blanchard (2016) estimates that the slope of the Phillips curve,
controlling for expected inflation, decreased to roughly 0.2 (in absolute value) for the Great Moderation
period, consistent with our Phillips multipliers for trend inflation near 2%. This finding is particularly
interesting because many papers have argued that downward nominal wage rigidity decreases the slope
of the Phillips curve at low inflation (Benigno and Ricci 2011; Lindé and Trabandt 2018). But our
framework does not feature any asymmetry between the costs of upward and downward adjustments of
wages or prices. Instead, the flattening of the Phillips curve is a result of state-dependent adjustment.
At low inflation, the frequencies of wage and price adjustments both decrease, falling from 10.8% and
12.5% per month at 5% trend inflation to 6.95% and 7.53% when trend inflation is zero. Likewise, the
adjustments get smaller; the mean absolute wage and price changes are 6.27% and 7.72% at 5% inflation,
falling to 4.93% and 6.18% at zero trend inflation. Since workers and firms are less reactive to shocks at
low inflation, the overall price level also becomes less reactive (causing the real economy to become more

reactive). Hence, the Phillips curve becomes substantially flatter.

5 Conclusions

We have developed a DSGE model with state-dependent price and wage rigidity, combining monopolistic
competition in goods and labor (as in Erceg et al. 2000), with nominal rigidity due to costly decision-
making (as in Costain and Nakov 2019). Our heterogeneous-agents approach, with idiosyncratic shocks
both to firms and to workers, allows us to fit our model to microdata on price and wage adjustments,
but also permits us to calculate the dynamic effects of monetary policy shocks. Our model assumes
that labor can be costlessly reallocated across firms at any time, so our study should be understood as
documenting the interactions of nominal price stickiness with nominal wage stickiness, abstracting from
matching frictions or any other form of labor specificity.

At a microeconomic level, we compare different calibrations to see how nominal rigidities affect price
and wage adjustment behavior. Assuming linear labor disutility makes the model much easier to solve,
but implies that the optimal wage never varies in response to individual productivity shocks; therefore
our preferred specification has convex disutility of labor. We estimate the convex disutility specification

to match hazard rates and adjustment histograms from price and wage microdata; our estimation is

3%Barnichon and Mesters (2018) propose directly estimating this long-run multiplier to measure the tradeoff between
inflation and unemployment.
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Table 5: Evaluating the nonlinear LPW model. Benchmark calibration VIN, at different trend inflation rates

Price setting statistics Wage setting statistics
Trend inflation rate 1% 0% 1% 2% 3% 5% 1% 0% 1% 2% 3% 5%
Freq. of change, %mo 9.04 753 9.06 10.2 10.2 12.5 7.28 6.95 753 834 9.11 108
Mean change, % -0.93 0.00 0.92 1.67 1.67 3.25 -0.05 1.10 2.17 3.00 3.58 4.53
Mean abs(change), % 6.50 6.18 6.59 6.94 6.94 7.72 491 493 520 5.50 576 6.27
Std. of changes, % 8.65 854 880 896 896 9.19 6.77 6.82 6.82 4.74 6.67 6.55
Skewness of changes 0.24 0.10 -0.03 -0.12 -0.12 -0.30 0.82 0.59 035 043 0.06 -0.11
Kurtosis of changes 4.88 512 480 4.60 4.60 4.36 12.1 123 12.00 11.9 12.00 12.0
Percent increase 379 435 514 56.5 56.5 64.8 42.7 53.7 634 706 75.0 80.8
Changes <5% 494  53.7 49.1 450 45.0 373 68.2 69.0 653 60.8 570 49.8
Changes <2.5% 30.8 35.70 30.7 273 273 219 29.1 30.5 28.0 252 229 17.1
Std. of prices, wages, % 3.39 293 340 3.73 3.73 4.35 780 7.73 779 486 792 8.04
Resetting cost, % rev 0.45 0.38 0.45 0.50 0.50 0.59 1.00 095 1.00 1.09 117 1.33
Timing cost, % rev 0.50 0.56 0.51 048 048 045 0.97 099 097 094 091 0.87
Loss relative to flex, % 244 240 244 249 249 2.59 2.56 252  2.63 277 289 3.16

Phillips multiplier®, on impact 0.12 0.11  0.13 0.16 0.18 0.23 0.20 0.18 0.21 0.27 0.29 0.35
Phillips multiplier®, long run®  0.17  0.15 0.20 0.25 0.30 0.39 0.19 0.14 0.18 0.23 0.27 0.34

“Note: For price setting, “Phillips multiplier” is the ratio of the change in price inflation to the change in log consumption. For wage setting, it is the ratio of the
change in wage inflation to the change in log employment.

®Note: The “long run” multiplier is calculated as the area under the inflation impulse response divided by the area under the log consumption (employment)
impulse response.
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numerically feasible since it only requires computing the model’s steady state. Our estimates match the
frequency of adjustment from microdata, and produce a histogram somewhat smoother than that observed
in the data. Firms in our estimated model spend less than one percent of revenues on decisions related
to price setting, while workers devote approximately two percent of their time to decisions about wage
setting. Allowing for a trend in idiosyncratic productivity over the life cycle implies that small negative
wage changes are relatively infrequent; this helps explain a pattern which is often interpreted as evidence
of downward nominal wage rigidity, in spite of the fact that there is no inherent downward rigidity in our
framework.

Our model implies a policy-relevant and empirically realistic degree of monetary nonneutrality. Money
growth shocks have similar real effects on impact in our state-dependent framework, but only half the
persistence, compared with the time-dependent framework of Calvo (1983). We find that wage stickiness
is a stronger source of monetary nonneutrality than price stickiness; calibrations of our model with wage
stickiness only produce almost as much non-neutrality as calibrations with wage and price stickiness
together. This accords with the consensus from time-dependent models of nominal rigidity (Huang and
Liu, 2002; Christiano et al., 2005); our study is the first to demonstrate this result in a state-dependent
model. In contrast, calibrations of our model with price stickiness only have much reduced real effects of
money shocks, and imply a strong, counterfactual rise in the real wage in response to monetary stimulus.

Monetary policy has a number of highly nonlinear effects in our framework. Larger money shocks
cause adjustment hazards to rise, so inflation responds more quickly and real effects are proportionally
smaller. Indeed, the absolute size of the cumulative real impact is maximized by a rise of roughly 4%
in the money supply; money shocks substantially larger than this have a predominantly negative impact
on real variables. Decreasing the trend inflation rate causes adjustment hazards to fall, both for prices
and wages. This alters the slope of the Phillips curve, as lower responsiveness of price-setting and wage-
setting makes inflation less responsive to macro shocks too. The real effects of a money shock are largest
at zero trend inflation, and decrease as the inflation trend becomes negative or positive. The effects on
the slope of the Phillips are quantitatively significant: its slope more than doubles as trend inflation rises
from 0% to 5% annually. A flatter Phillips curve at low trend inflation rates has often been explained by
appealing to downward nominal wage rigiditiy, but in our context it is caused by state-dependent changes

in adjustment frequencies, not by any downward asymmetry in the costs of adjustment.
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Online Appendix

A Computation

A.1 Outline of algorithm

Computing this model is challenging due to heterogeneity. At any time ¢, firms face different productivity
shocks A;; and are stuck at different prices Pj;; likewise productivity and wages vary across workers. The
Calvo model is popular because, up to a first-order approximation, only the average price matters for
equilibrium. But this property does not hold in most models; here we must treat all equilibrium quantities
as functions of the time-varying distribution of prices and productivity across firms.

We address this problem by implementing Reiter’s (2009) solution method for dynamic general equi-
librium models with heterogeneous agents and aggregate shocks. As a first step, the algorithm calculates
the steady-state general equilibrium in the absence of aggregate shocks. Idiosyncratic shocks are still
active, but are assumed to have converged to their ergodic distribution, so the real aggregate state of
the economy is a constant, =. The algorithm solves for a discretized approximation to this steady state,
restricting all idiosyncratic state variables to discrete grids. That is, real log prices pj;; lie at all times

2 .w?"}; and likewise for

on a fixed grid v» = {p',p?,..p""}; real log wages wy lie in v* = {w!, w
log productivities of firms and workers: aj; € 7¢ = {a',d?,..a”"} and z; € v* = {2}, 2%,..2%"}. The
four grids 7%, v*, 4%, and ~4* are all assumed to have constant step sizes (in logs) between grid points.
Moreover, we assume (only for numerical convenience) that the step size in v* equals that in 4P, and also
that the number of grid points is the same in these two grids: #% = #P.

We can then view firms’ steady state value function as a matrix V of size #P x #%, comprising the
values v/* = v(p’, a*, E) associated with prices and productivities (p’ ,ak) € 7 x 431 Similarly, the
distribution of firms at the beginning (or end) of any given period can be viewed as a #P x #* matrix
¥ (or Cf’) in which the row j, column k element W7* (or \I'Jk) represents the fraction of firms in state
(p7,a*) at the beginning (or end) of any given period. Likewise, the workers’ steady-state value function
and the beginning- and end-of-period distributions of workers can be represented by matrices L, % and
TV of size #% x #7. While these matrices are large objects, we can nonetheless solve for a steady-state
general equilibrium as a low-dimensional root-finding problem. By guessing the steady-state values of C
and NV, we can set up the Bellman equations of the workers and firms, and solve for their fixed points
L and V; given optimal policies, we can describe the dynamics of the distributions, and thus solve for
the steady-state distributions ¥%V, {IVJW, ¥, and \Tl; knowing the distributions, we will show that we can
construct two scalar equations that suffice to check the values of C' and N.

In a second step, Reiter’s method constructs a linear approximation to the dynamics of the discretized
model, by perturbing it around the steady state general equilibrium on a point-by-point basis. That
is, the firms’ value function is represented by a #P X #% matrix V; with row j, column k element
v{k = u(p?,aF, Z;), thus summarizing the time ¢ values at all grid points (p?,a*) € 4P x 4*. Then,
instead of viewing the Bellman equation as a functional equation that defines v(p,a,Z) for all possible

idiosyncratic and aggregate states p, a, and =, we think of it as an expectational relation between the

3In this appendix, bold face indicates matrices, and (most) superscripts represent indices of matrices or grids.
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matrices V; and V;y;. This amounts to a (large!) system of #P#¢ first-order expectational difference

equations that determine the dynamics of the #P#® variables v} k

. In addition, there will be a relation
between the workers’ values L; and Ly, 1 at times ¢ and ¢+ 1, which can also be seen as a system of #%#*
scalar equations in #“#* unknowns. Finally, the distribution of firms at time ¢ + 1, Wy is derived from
the distribution at time ¢, ¥;, which amounts to #P#% scalar equations; and the distributional dynamics
of workers links the distributions ¥%W; and ¥V, ; with a matrix equation that is equivalent to a system
of #W4#* scalar equations.??

We linearize these equations numerically (together with a handful of scalar equations,including first-
order conditions for some aggregate variables). We then solve for the saddle-path stable solution of the
linearized model using the QZ decomposition, following Klein (2000). It is crucial to note here that our
problem is tractable because we have separated the two sticky decisions in our model between two different
classes of decision-makers. In a model where a single decision-maker adjusted p and w in response to
the shocks a and z, the value function and distributional dynamics would both have to be evaluated
over #PHYWH4Z orid points. Solving for dynamic general equilibrium would require solving a system of
slightly more than 2#P#Y#%47 equations. Instead, since we have assumed prices and wages are set by
different agents, we will have to solve slightly more than 2#P#® + 2#Y#7 equations, which is a vastly

smaller problem.33

A.2 The discretized model

Firms’ values are summarized by matrices V; and V7, of size #P x #¢, and the vector vy, of length #°.
Workers’ values are described by the matrices, L, L§, and it, of size #%“ x #7*. The elements of V; are
v?k = v(p’,a*,Z;), and the elements of V§ are vf’jk = v°(p?, a¥, Zy), for (pj,ak) € vP x ~%. Likewise, L;
has elements l{k = I(w?, 2*, =), and L{ has elements lte’jk = 1°(wl, 2%, 5y), for (w?,zF) € v x 4*. The
expected values of setting a new price or wage are given by vectors v; and L;, with elements oF = 0(a¥, Zy)
and l?k = [(w?,d*, ).

Related matrices include the probability matrices of firms and workers, A; and R;. The (j, k) elements

of these matrices are given by34

) ~k _ ,Jk ) Tk _ ljk
N e A e B (91)
RAW¢ Kp&

32Here we are assuming that we can substitute out the steps that define the end-of-period distributions ¥, and {Ivl;"’ If
not, our system will contain an additional 24" #7 equations.

33In other words, computational complexity under our approach scales exponentially with the number of sticky decisions
if these decisions are all taken by the same agent, but scales linearly in the number of sticky decisions if different decisions
are controlled by different agents. (Actually, the same principle is true in models of fully flexible decisions, but the issue is
more relevant here because stickiness creates heterogeneity— while prices and wages are jump variables in flexible models,
in the presence of nominal rigidity they become state variables.)

34 Actually, (91) is a simplified description of A*. While (91) implies that AJ* represents the function A(e) evaluated
at the log price grid point p’ and log productivity grid point a, in our computations )\{k actually represents the average
I pj+pj+1)

2 2

of A(e) over all log prices in the interval (p , given log productivity a”. Calculating this average requires

interpolating the function d¢(p, a®) between price grid points. Defining )\{k this way ensures differentiability with respect to
changes in the aggregate state =;.
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Finally, we also define the logit probabilities IT; (a matrix) and ITV,; (a 3d array). The elements of these

matrices are
o exp (v () )

ik |a¥) =
" = m(p’ =
7 t(p’|a”) Zfzpl " exp (vpF ) (krwy))

; (92)

nomexp (1 (ku€l®))
SR exp (I ("))

Tk — (", ) =

Here Wf ¥ is the probability that a firm which has decided to adjust its price at time ¢ chooses real log price
p?, conditional on log productivity a”; T, IR is 8 worker's corresponding probability of choosing the real
log wage w", conditional on current log real wage w’ and log productivity z*. The default probabilities
for log real prices p € P are n = (n',....n7") = (n(pY),...,n(®P"")), and p™ = (R!,... ,no7") =
(n®(wh),...,n%(w,#")) is the analogous vector for log real wages w € .

In this discrete representation, the productivity processes (62) and (73) can be summarized by matrices
S and S” of size #* x #® and #* x #*. The (m, k) elements of these matrices represent the following
transition probabilities, respectively:

Sz,mk _ prob(zit — Zm’Zi,t—l — Zk)- (94)

S™ = prob(aj; = a™|aj—1 = a®),

It is helpful to introduce analogous Markovian notation to describe the deflation of real prices and
wages as the aggregate price level rises. Let Ty be a #P x #P Markov matrix in which the row m, column
[ element represents the probability that firm j’s beginning-of-period log real price pj; equals p™ € ~? if

its log real price at the end of the previous period was p' € 7P:

™ = prob(pjr = p™|pji—1 = ') (95)

Generically, the deflated log price pji = pji—1 — @t = pj1—1 — ©(E¢, Z¢—1) will fall between two grid points;
then the matrix T; must round up or down stochastically. Also, if pj;—1 — 7; lies below the smallest
or above the largest element of the grid, then T; must round up or down to keep prices on the grid.?®

Therefore we construct T according to

1 if p! — iy < pt =p™
% if pt < p™ =min{p €I :p>pl —i;}
T = prob(pjr = p™|pji—1 = p'yir) = % if pt <p™ =max{p €I?:p<pl —is} (96)
1 if pl — iy > p"" =p™
0 otherwise

3°In other words, we assume that any nominal price that would have a real log value less than p' after inflation is
automatically adjusted upwards to the real log value p' (and when computing examples with deflation we must adjust down
any real log price exceeding p#p). This assumption is made for numerical purposes only, and has a negligible impact on the
equilibrium as long as we choose a sufficiently wide grid ~?.
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Furthermore, recall that we have assumed that the price and wage grids v* and " have the same step
size, and the same number of grid points. Note that in this case, the transition probabilities mapping real
log wages from one period to the beginning of the next are the same as those for real log prices. In other

words, for all m and [,
prob(wi = w™ w1 = w') = prob(py = p™"lpji1 =) = T (97)

Thus we can describe the distributional dynamics of wages using exactly the same matrix T; that we
used from prices.
Given this notation, we can now write the distributional dynamics in a more compact form. The time

t distributions of firms and workers are derived from the distributions at the end of ¢ — 1 as follows:
O, =T, ¥,,8, P = BpTi®} (%) + (1 — Bp) Y. (98)

Note that exogenous shocks are represented from left to right in the matrices \AI}t and \Ilé", so that their
transitions can be treated by right multiplication, while sticky decision variables are represented vertically,
so that transitions related to choice variables can be described by left multiplication. The workers’
dynamics reflect the fact that a worker dies at the end of any period with probability 1 — 8p, being
replaced by a newborn worker, whose wage and productivity are governed by the distribution ¥9. Next,
to calculate the effects of price adjustment on the distribution, let 1,,, 1,4, Lyw, and 1, be matrices of
ones of size #P X #P #P x #% HY x #Y and #Y X #7, respectively. After production occurs at time t,

as new real prices are set, the price distribution adjusts as follows:
T, = (1,o—A) O+ TL O (1p(Ar © By)). (99)

where the operator ® represents element-by-element multiplication (the Hadamard product). The matrix
notation does not carry over to the wage dynamics, because the distribution of new wages varies with the

current wage, so instead we state the dynamics one row at a time:

T = (L-AP) 0 B+ 1, (I 0 AY 0 ). (100)

Here W7 W7 and A7 are the jth rows of W, ¥, and AY, respectively, while IT”/ is the matrix
representing the probability of choosing wage w’ conditional on each possible state: prob(w’|w’, ¥, ;).
1, and 1, are conformable row vectors of ones.

The same transition matrices Ty, S, and S* show up when we write the Bellman equations in matrix

form. The discounted values of choosing each possible real price p are

C*’Y C*“f
V¢ = BE; {Cth;HVtHS}, L¢ = BE; {ijT;HLtHSZ}. (101)
t t
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Here the expectation FE; refers only to the effects of the time ¢ + 1 aggregate shock g:11, because the
dynamics of the idiosyncratic states (p;¢, aj¢) and (wy, i) are completely described by the matrices T 1,
S, and SZ.

Now, let U; be the #P x #% matrix of current payoffs to the firm, with elements

= (o) - ) (102)

exp(ak) ) exp(epd)

for (pj,ak) € P x v*. The define the current payoffs of the workers, let H; be the #% x #* matrix
containing the elements h{k = hy(w, zk), representing labor demand in state (w’, z k =4). Also define W
as a conformable matrix with all the elements of row j equal to exp w/, and X; as a matrix containing
the elements W representing total disutility of time use in state (w?, 2", =¢). Then we can

calculate the value functions as

Vi, = U+ A O(E"VE —KP)+ (1, — A) @ Ve — K} (103)
L; = WoOoH, - X, +R,® E™L® + (lww — Rt) o) (104)

In order to check labor market clearing it will be helpful to define several summary statistics related to
labor time use. First, let K and K7 and be total time use for choosing the timing of the price decision,

and actually choosing prices:

#p #a N . Ak N 1 — ik
K} = > (Ag In (i) + (1= N )ln( 1—§ >> (105)

=1 k=1
#p #a ‘k:

EF o= 3> wiak (Zw;’fln( )) (106)
=1 k=1 n*
#p #a

Ay = Wi* exp(—ep’ — ). (107)
j=1k=1

Note that in the second equation, the time K[ devoted to choosing prices is weighted by the fraction
adjusting, /\{k. In the third equation, A; represents a price dispersion measure that relates time devoted
to production to total goods produced.

Next, we discuss how we apply the two steps of Reiter (2009) method to this discrete model.

A.3 Step 1: steady state

In the aggregate steady state, aggregate shocks are zero; the distribution of firms takes some unchanging
value ¥, and the distribution of workers takes some unchanging value ¥%W. Thus the aggregate state of
the economy is constant: Z; = (g¢, ¥4—1, U} ¢) = (0, ¥, ¥WV) = Z. We indicate the steady state of all
equilibrium objects by dropping the time subscripts and the function argument =, so the steady state
value function V has elements v/* = v(p?, a*, Z).

Long run monetary neutrality in steady state implies that the rate of nominal money growth equals

the rate of inflation, © = exp(i). Thus, the steady-state transition matrix T is known, since it depends
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only on steady state inflation i. Moreover, the Euler equation reduces to exp(i) = SR, which simply
serves to determine the nominal interest rate R.

We can then calculate general equilibrium as a three-dimensional root-finding problem, by guessing
consumption C, labor demand N, and the aggregate wage level w. On one hand, knowing ¢(Z) and
w(E) we can construct the firm’s profit function u(p,a,Z) = (e? — w(E)e™*)c(E)e™P. Knowing the
profit function, we can solve the firm’s problem by backwards induction, which yields the value functions
v, v and 0, and the policy functions A and 7. Given the firm’s policy functions, we can calculate
the distributional dynamics to find the steady-state distribution of prices and productivities, ¥(p,a).
From the firm’s problem and the steady-state distribution we can also calculate the time firms devote to
decision-making (K7 and K7), and the efficiency wedge A.

On the other hand, knowing n(Z) and w(Z) we can construct the labor demand function h(w, z,Z) =
e =D (Z)w(E)e~ ™, and given ¢(Z) we can also calculate worker’s utility value of labor income,
u'(c(2))e*h(w, z,=Z). We can then solve the worker’s Bellman equation by backwards induction. This
yields the vaue functions [, [¢, and [, and the policy functions p, and 7%, as well as the time use function
7 and p, and the worker’s marginal value of time £. Given the worker’s policy functions, we can calculate
the distributional dynamics to find the steady-state distribution of wages and productivities, ¥*(w, z).

With these distributions in hand, we can then check whether the guessed values of C', N, and w are

consistent with an equilibrium. Then we check the following three scalar equations:

#P F#

1 = ZZ@&jkeXp((l—e)pj), (108)

j=1 k=1

#P Ha ﬁ
w = Z wa,jk exp ((1 — ) (W — zk)> . (109)

j=1k=1

N = ACH kK™ + kK. (110)

The first two equations are the aggregate price and wage identities; the last is the labor market clearing
condition. If these three equations are satisfied with sufficient accuracy, then a steady-state general

equilibrium has been found.

A.4 Step 2: linearized dynamics

We now conjecture that nominal and real state variables take the form Q, = (M, gi, O¢, YY) and
= = (g, Py, DY), respectively. We will show that this is a valid state variable for the economy by
constructing an equilibrium in terms of this state.

Given the steady state, the general equilibrium dynamics can be calculated by linearization. To reduce
the size of the Jacobian, we will eliminate many variables from the equation system. Thus, we calculate
the end-of-period distributions as an intermediate step, without explicitly counting them in the equation

system:

T, = (La—A) OO+ O (1(A; ©Fy)) (111)

TP = (L-APY) o U + 1, (I 0 AY © BY) (112)
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Having thus calculated \flt and \il%”, the following two equations can be counted as determining the

dynamics of the distributions ¥ and ¥V from periods ¢ to ¢t + 1:

O = Tiq¥,S, (113)

Y= BpTeP(S*) + (1 - Bp) PP,y (114)

Similarly, we do not count the expected values V¢ and L¢ explicitly in our equation system, but we

eqnarray them in an intermediate step as follows:

C*’Y C*’Y
V¢ = gEt{(;j;T;HVtHS}, L = 5Et{ct_+§Tg+1Lt+1SZ} (115)
t t

Given the expected values V¢ and L7, which can be used to calculate the probabilities A, II;, and so
forth, we then count the following two Bellman equations, which determine the dynamics of the value

functions V; and Ly:
V, = U+AG(E VS, -KN+(1-A)OVE —K) (116)

L, = WoH;—X,;+R,®E"LE + (1 - Ry) 0 L&, (117)

We also include the following six scalar equations in our system:

# #
L= 3% wfexp((1—e)p) (118)
j=1k=1
# o '
wmr = D P exp((1— en) (W — 2)) (119)
j=1k=1
1
1Nt = AtCt—i-K,ﬂK;T—i—/i/\Kt)\ (120)
,u,eXp(gt) — mt (121)
exp it me_1
C—’Y
1-—2— = BE | —2L (122)
miCy it+1C}
g1 = Gggr + €l (123)

If we now collapse all the endogenous variables into a single vector
Yt = (vec (T, vec (%), my_1, wy, ir, vec(Vy)', vec(Ly), Cy, Nt)l

then the four matrix equations (113), (114), (116), and (104), together with the six scalar equations
(118)-(123), amount to first-order system of the following form:

E.F <Yt+1,ytagt+1agt) =0 (124)

where E, is an expectation conditional on g; and all previous shocks.
Since the number of equations matches the number of variables included in the system F, we can

linearize the system numerically with respect to all its arguments to construct the Jacobian matrices
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A= D?Hl}", B = D?t}", C = Dy, F, and D = Dy F. Thus we obtain the following first-order

expectational difference equation system:
EtAA7t+1 + BA?t + EthH_l +Dg; =0 (125)

where A represents a deviation from steady state. This system has the form considered by Klein (2000),
so we solve our model using his QZ decomposition method. When applying this method, note that Wy,

WY, my_1, we, and iy are all predetermined at ¢, while V¢, L;, C, and N; are jump variables.
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